Optics and Precision Engineering, Volume. 31, Issue 16, 2465(2023)
Remote sensing multi-scale object detection based on multivariate feature extraction and characterization optimization
[1] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature Pyramid Networks for Object Detection[C], 936-944(21).
[2] HE K M, GKIOXARI G, DOLLÁR P et al. Mask R-CNN[C], 2980-2988(22).
[4] LIN T Y, GOYAL P, GIRSHICK R et al. Focal Loss for Dense Object Detection[C], 2999-3007(22).
[5] HOU J Y, MA H B, WANG S J. Parallel Cascade R-CNN for object detection in remote sensing imagery[J]. Journal of Physics: Conference Series, 1544(2020).
[6] [6] 6沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2022, 26(8): 1624-1635. doi: 10.11834/j.issn.1007-4619.2022.8.ygxb202208011SHAM M, LIY, LIA. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. Journal of Remote Sensing, 2022, 26(8): 1624-1635. (in Chinese). doi: 10.11834/j.issn.1007-4619.2022.8.ygxb202208011
[7] CHENG G, SI Y J, HONG H L et al. Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 18, 431-435(2021).
[8] [8] 8程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500. (in Chinese). doi: 10.37188/OPE.20223020.2489
[9] [9] 9薛俊达, 朱家佳, 张静, 等. 基于FFC-SSD模型的光学遥感图像目标检测[J]. 光学学报, 2022, 42(12): 130-140. doi: 10.3788/AOS202242.1210002XUEJ D, ZHUJ J, ZHANGJ, et al. Object detection in optical remote sensing images based on FFC-SSD model[J]. Acta Optica Sinica, 2022, 42(12): 130-140.(in Chinese). doi: 10.3788/AOS202242.1210002
[10] XU D Q, WU Y Q. FE-YOLO: a feature enhancement network for remote sensing target detection[J]. Remote Sensing, 13, 1311(2021).
[11] [11] 11陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MAC, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682.(in Chinese). doi: 10.37188/OPE.20212911.2672
[12] [12] 12朱威, 王立凯, 靳作宝, 等. 引入注意力机制的轻量级小目标检测网络[J]. 光学 精密工程, 2022, 30(8): 998-1010. doi: 10.37188/OPE.20223008.0998ZHUW, WANGL K, JINZ B, et al. Lightweight small object detection network with attention mechanism[J]. Opt. Precision Eng., 2022, 30(8): 998-1010. (in Chinese). doi: 10.37188/OPE.20223008.0998
[13] [13] 13赵浩光, 王平, 董超, 等. 结合多尺度视觉显著性的舰船目标检测[J]. 光学 精密工程, 2020, 28(6): 1395-1403. doi: 10.3788/ope.20202806.1395ZHAOH G, WANGP, DONGC, et al. Ship detection based on the multi-scale visual saliency model[J]. Opt. Precision Eng., 2020, 28(6): 1395-1403. (in Chinese). doi: 10.3788/ope.20202806.1395
[14] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 128, 642-656(2020).
[16] ZHOU X Y, ZHUO J C, KRÄHENBÜHL P. Bottom-Up Object Detection by Grouping Extreme and Center Points[C], 850-859(15).
[17] DUAN K W, BAI S, XIE L X et al. CenterNet: Keypoint Triplets for Object Detection[C], 6568-6577(2019).
[18] TIAN Z, SHEN C H, CHEN H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635(2019).
[20] LIU Y J, YANG J L, CUI W Q. Simple, Fast, Accurate Object Detection Based on Anchor-Free Method for High Resolution Remote Sensing Images[C], 2443-2446(2020).
[21] ZHANG T, WANG G Q, ZHUANG Y et al. Feature Enhanced Centernet for Object Detection in Remote Sensing Images[C], 1639-1642(2020).
[22] PAN X J, REN Y Q, SHENG K K et al. Dynamic Refinement Network for Oriented and Densely Packed Object Detection[C], 11204-11213(13).
[23] YU F, WANG D Q, SHELHAMER E et al. Deep Layer Aggregation[C], 2403-2412(18).
[24] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[25] NAJIBI M, SAMANGOUEI P, CHELLAPPA R et al. SSH: Single Stage Headless Face Detector[C], 4885-4894(22).
[26] HOU Q B, ZHOU D Q, FENG J S. Coordinate Attention for Efficient Mobile Network Design[C], 13708-13717(20).
[27] QIN X, WANG Z L, BAI Y C et al. FFA-net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11908-11915(2020).
[28] LI K, WAN G, CHENG G et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).
[29] LU X Q, ZHANG Y L, YUAN Y et al. Gated and axis-concentrated localization network for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 179-192(2020).
[30] LONG Y, GONG Y P, XIAO Z F et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 2486-2498(2017).
[31] YANG J F, FU X Y, HU Y W et al. PanNet: A Deep Network Architecture for Pan-Sharpening[C], 1753-1761(22).
[32] ZHANG J, XIE C M, XU X et al. A contextual bidirectional enhancement method for remote sensing image object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4518-4531(2020).
[33] PARK J, LEE J Y et al. CBAM: Convolutional Block Attention Module[M]. Computer Vision - ECCV 2018, 3-19(2018).
Get Citation
Copy Citation Text
Yuebo MENG, Fei WANG, Guanghui LIU, Shengjun XU. Remote sensing multi-scale object detection based on multivariate feature extraction and characterization optimization[J]. Optics and Precision Engineering, 2023, 31(16): 2465
Category: Information Sciences
Received: Nov. 10, 2022
Accepted: --
Published Online: Sep. 5, 2023
The Author Email: Guanghui LIU (guanghuil@163.com)