Laser & Optoelectronics Progress, Volume. 58, Issue 9, 0901002(2021)
Differential Absorption Lidar Monitoring of Heavy Pollution Process
Fig. 2. Surface weather changes during the observation period. (a) Visibility and mass concentration of the particulate matter; (b) precipitation and air pressure; (c) relative humidity and temperature; (d) wind direction and speed
Fig. 3. Changes in the mass concentration of pollutants during the observation period. (a) Particulate matter; (b) O3 and NO2; (c) CO and SO2
Fig. 4. Temperature sounding profile during the observation period. (a) 16th; (b) 17th; (c) 18th; (d) 19th ; (e) 20th; (f) 21st
Fig. 5. Height field of the 850 hPa potential. (a) 15th; (b) 16th; (c) 17th; (d) 18th; (e) 19th; (f) 20th
Fig. 6. Wind field with a height of 10 m. (a) 15th; (b) 16th; (c) 17th; (d) 18th; (e) 19th; (f) 20th
Fig. 7. Time and space distribution of pollutants measured by differential absorption lidar. (a) Particle extinction coefficient; (b) O3 mass concentration
Fig. 10. Dackward trajectory of the air mass from 2018-12-15T19:00—2018-12-17T19:00
Fig. 11. NAAPS simulated aerosol. (a) 2018-12-15T08:00; (b) 2018-12-16T08:00; (c) 2018-12-16T20:00; (d) 2018-12-17T02:00
|
Get Citation
Copy Citation Text
Pengcheng Jia, Nianwen Cao, Guangqiang Fan, Yirui Zhao. Differential Absorption Lidar Monitoring of Heavy Pollution Process[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0901002
Category: Atmospheric Optics and Oceanic Optics
Received: Sep. 7, 2020
Accepted: Oct. 12, 2020
Published Online: May. 12, 2021
The Author Email: Jia Pengcheng (nwcao@nuist.edu.cn), Cao Nianwen (20181205004@nusit.edu.cn)