Journal of Synthetic Crystals, Volume. 53, Issue 1, 73(2024)

Fabrication and Characteristics of p-Si/n-Ga2O3 Heterojunction

CHEN Peiran, JIAO Teng, CHEN Wei, DANG Xinming, DIAO Zhaoti, LI Zhengda, HAN Yu, YU Han, and DONG Xin*
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [1] [1] ALLIOUX F M, GHASEMIAN M B, XIE W J, et al. Applications of liquid metals in nanotechnology[J]. Nanoscale Horizons, 2022, 7(2): 141-167.

    [2] [2] BAHARFAR M, KALANTAR-ZADEH K. Emerging role of liquid metals in sensing[J]. ACS Sensors, 2022, 7(2): 386-408.

    [3] [3] BLEVINS J, YANG G. On optical properties and scintillation performance of emerging Ga2O3∶crystal growth, emission mechanisms and doping strategies[J]. Materials Research Bulletin, 2021, 144: 111494.

    [4] [4] BOMHARD E M. The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide[J]. Environmental Toxicology and Pharmacology, 2020, 80: 103437.

    [5] [5] BOSI M, MAZZOLINI P, SERAVALLI L, et al. Ga2O3 polymorphs: tailoring the epitaxial growth conditions[J]. Journal of Materials Chemistry C, 2020, 8(32): 10975-10992.

    [6] [6] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381.

    [7] [7] CHEN Z W, SAITO K, TANAKA T, et al. Efficient pure green emission from Er-doped Ga2O3 films[J]. CrystEngComm, 2017, 19(31): 4448-4458.

    [8] [8] CHI Z Y, ASHER J J, JENNINGS M R, et al. Ga2O3 and related ultra-wide bandgap power semiconductor oxides: new energy electronics solutions for CO2 emission mitigation[J]. Materials, 2022, 15(3): 1164.

    [9] [9] COOKE J, SENSALE-RODRIGUEZ B, GHADBEIGI L. Methods for synthesizing β-Ga2O3 thin films beyond epitaxy[J]. Journal of Physics: Photonics, 2021, 3(3): 032005.

    [10] [10] DONG H, XUE H W, HE Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2019, 40(1): 011802.

    [11] [11] FU B, JIA Z T, MU W X, et al. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism[J]. Journal of Semiconductors, 2019, 40(1): 011804.

    [12] [12] GALAZKA Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics[J]. Semiconductor Science and Technology, 2018, 33(11): 113001.

    [13] [13] GALAZKA Z, GANSCHOW S, IRMSCHER K, et al. Bulk single crystals of β-Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides[J]. Progress in Crystal Growth and Characterization of Materials, 2021, 67(1): 100511.

    [14] [14] GONZALEZ E A, JASEN P V, LUNA C R, et al. Adsorption of hydrogen on β-Ga2O3(100): a theoretical study[J]. Surface Review and Letters, 2007, 14(1): 79-86.

    [15] [15] GUO D, GUO Q, CHEN Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157.

    [16] [16] GUO D Y, LI P G, CHEN Z W, et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector[J]. Acta Physica Sinica, 2019, 68(7): 078501.

    [17] [17] GUPTA C, PASAYAT S S. Vertical GaN and vertical Ga2O3 power transistors: status and challenges[J]. Physica Status Solidi (a), 2022, 219(7): 2100659.

    [18] [18] HIGASHIWAKI M. β-gallium oxide devices: progress and outlook[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(11): 2100357.

    [19] [19] HIGASHIWAKI M, MURAKAMI H, KUMAGAI Y, et al. Current status of Ga2O3 power devices[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A1.

    [20] [20] HOU X H, ZOU Y N, DING M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications[J]. Journal of Physics D: Applied Physics, 2021, 54(4): 043001.

    [21] [21] HUAN Y W, SUN S M, GU C J, et al. Recent advances in β-Ga2O3-metal contacts[J]. Nanoscale Research Letters, 2018, 13(1): 246.

    [22] [22] KIM J, PEARTON S J, FARES C, et al. Radiation damage effects in Ga2O3 materials and devices[J]. Journal of Materials Chemistry C, 2019, 7(1): 10-24.

    [26] [26] GU K Y, ZHANG Z L, TANG K, et al. Effect of a seed layer on microstructure and electrical properties of Ga2O3 films on variously oriented Si substrates[J]. Vacuum, 2022, 195: 110671.

    [27] [27] HUANG J A, LI B, MA Y C, et al. Effect of homo-buffer layers on the properties of sputtering deposited Ga2O3 films[J]. IOP Conference Series: Materials Science and Engineering, 2018, 362: 012003.

    [28] [28] DENBAARS S P, MAA B Y, DAPKUS P D, et al. Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD[J]. Journal of Crystal Growth, 1986, 77(1/2/3): 188-193.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Peiran, JIAO Teng, CHEN Wei, DANG Xinming, DIAO Zhaoti, LI Zhengda, HAN Yu, YU Han, DONG Xin. Fabrication and Characteristics of p-Si/n-Ga2O3 Heterojunction[J]. Journal of Synthetic Crystals, 2024, 53(1): 73

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 8, 2023

    Accepted: --

    Published Online: May. 31, 2024

    The Author Email: Xin DONG (dongx@jlu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics