Acta Optica Sinica, Volume. 40, Issue 6, 0623001(2020)
Performance Improvement of Phosphorescent Organic Light-Emitting Devices Using B3PyPPM∶Cs
[3] Wu Z G, Zheng Y X, Zhou L et al. Suppression of efficiency roll-off in highly efficient blue phosphorescent organic light-emitting devices using novel iridium phosphors with good electron mobility[J]. Organic Electronics, 42, 141-145(2017).
[4] Chiu T L, Chen H J, Hung Y H et al. Structural optimizing carrier recombination for efficient blue phosphorescence organic light-emitting diode with ambipolar host[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 54-59(2016).
[5] Lee W H, Kim D H, Justin Jesuraj P et al. Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness[J]. Materials Research Express, 5, 076201(2018).
[7] Yang X L, Zhou G J, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chemical Society Reviews, 44, 8484-8575(2015).
[8] Yasuda T, Yamaguchi Y, Zou D C et al. Carrier mobilities in organic electron transport materials determined from space charge limited current[J]. Japanese Journal of Applied Physics, 41, 5626-5629(2002).
[9] Baldo M A, Adachi C, Forrest S R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation[J]. Physical Review B, 62, 10967-10977(2000).
[10] Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Physical Review B, 75, 125328(2007).
[11] Yin X J, Zhang T K, Peng Q M et al. Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: high efficiency deep-red phosphorescent OLEDs[J]. Journal of Materials Chemistry C, 3, 7589-7596(2015).
[13] Wang J X, Chen J S, Qiao X F et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Applied Materials & Interfaces, 8, 10093-10097(2016).
[14] Poitras D, Kuo C C, Py C. Design of high-contrast OLEDs with microcavity effect[J]. Optics Express, 16, 8003-8015(2008).
[15] Cao Y, Yu G, Heeger A J. Efficient, low operating voltage polymer light-emitting diodes with aluminum as the cathode material[J]. Advanced Materials, 10, 917-920(1998).
[17] Malliaras G G, Salem J R, Brock P J et al. Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes[J]. Journal of Applied Physics, 84, 1583-1587(1998).
[18] Sasabe H, Chiba T, Su S J et al[J]. 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices Chemical Communications, 2008, 5821-5823.
[19] Kido J, Sasabe H, Yokoyama D et al. White OLEDs for general lighting[Invited Paper][J]. SID Symposium Digest of Technical Papers, 43, 776-777(2012).
Get Citation
Copy Citation Text
Wenyan Lin, Ning Chen, Baoqing Lin, Zhijun Wu, Chaodong Ling. Performance Improvement of Phosphorescent Organic Light-Emitting Devices Using B3PyPPM∶Cs[J]. Acta Optica Sinica, 2020, 40(6): 0623001
Category: Optical Devices
Received: Sep. 16, 2019
Accepted: Nov. 29, 2019
Published Online: Mar. 6, 2020
The Author Email: Ling Chaodong (lcdongedac@126.com)