Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1434001(2025)
Sparse Scanning Dual-Domain Image Reconstruction Model Based on Deep Learning
Fig. 1. Schematic diagrams of CBCT geometric model. (a) Industrial CBCT scanning mode; (b) CBCT sparse-view scanning imaging mode
Fig. 5. Comparison of grayscale values of CT reconstructed images with different time steps
Fig. 11. Reconstruction results of slice 1 by different algorithms. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e)DDPM; (f) DDDM; (g) WDRG
Fig. 12. Reconstruction results of slice 2 by different algorithms. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e) DDPM; (f) DDDM; (g) WDRG
Fig. 13. Reconstruction results of different algorithms in BGA dataset. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e) DDPM; (f) DDDM; (g) WDRG
Fig. 14. Reconstruction results of BGA dataset when
|
|
|
|
|
|
Get Citation
Copy Citation Text
Zhengheng Li, Chenyin Ni, Chunmin Zhang. Sparse Scanning Dual-Domain Image Reconstruction Model Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1434001
Category: X-Ray Optics
Received: Nov. 19, 2024
Accepted: Feb. 7, 2025
Published Online: Jul. 17, 2025
The Author Email: Zhengheng Li (li_zhengheng@njust.edu.cn), Chenyin Ni (chenyin.ni@njust.edu.cn)
CSTR:32186.14.LOP242283