Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1434001(2025)

Sparse Scanning Dual-Domain Image Reconstruction Model Based on Deep Learning

Zhengheng Li1、**, Chenyin Ni2、*, and Chunmin Zhang3
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing 210094, Jiangsu , China
  • 2School of Physics, Nanjing University of Science & Technology, Nanjing 210094, Jiangsu , China
  • 3CT Business Division, Unicomp Technology Co., Ltd., Wuxi 214111, Jiangsu , China
  • show less
    Figures & Tables(20)
    Schematic diagrams of CBCT geometric model. (a) Industrial CBCT scanning mode; (b) CBCT sparse-view scanning imaging mode
    Reconstruction process of wavelet transform and inverse transform
    Forward and reverse processes of DDPM for sparse scan CT reconstruction
    CT reconstruction images with different time steps
    Comparison of grayscale values of CT reconstructed images with different time steps
    Linear reconstruction process of sparse view CT
    Low frequency diffusion module and high frequency refinement module
    Generator and discriminator network framework
    Domain transformation of WDRG
    Micro focus industrial CBCT equipment
    Reconstruction results of slice 1 by different algorithms. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e)DDPM; (f) DDDM; (g) WDRG
    Reconstruction results of slice 2 by different algorithms. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e) DDPM; (f) DDDM; (g) WDRG
    Reconstruction results of different algorithms in BGA dataset. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e) DDPM; (f) DDDM; (g) WDRG
    Reconstruction results of BGA dataset when NS=90. (a) Reference image; (b) FBP; (c) SART; (d) WGAN; (e) DDPM; (f) DDDM; (g) WDRG
    • Table 1. Quantitative results of CT reconstruction

      View table

      Table 1. Quantitative results of CT reconstruction

      tPSNR /dBSSIMRMSE
      2031.180.73240.0276
      5033.970.91820.0200
      10033.100.92530.0221
      20034.820.91160.0182
      50031.580.92160.0264
      100031.570.81930.0264
    • Table 2. Dataset experimental parameter setting

      View table

      Table 2. Dataset experimental parameter setting

      Parameter2DeteCTBGA
      Scanning methodtCBCTCBCT
      Rotate angle /(°)3030
      Tube voltage /kV105
      Current /μA120
      Focus to object distance /mm4536.87
      Focus to detector distance /mm520313.39
      Detector pixel size×array length /(mm×pixel)0.085×5120.085×1536
      Reconstruction matrix /(pixel×pixel)512×512512×512
    • Table 3. Quantitative reconstruction results of slice 1 by different algorithms

      View table

      Table 3. Quantitative reconstruction results of slice 1 by different algorithms

      AlgorithmPSNR /dBSSIMRMSE
      FBP20.340.46610.0962
      SART23.780.53520.0647
      WGAN29.130.87690.0350
      DDPM33.740.91490.0205
      DDDM39.040.96390.0112
      WDRG41.790.96540.0081
    • Table 4. Quantitative reconstruction results of slice 2 by different algorithms

      View table

      Table 4. Quantitative reconstruction results of slice 2 by different algorithms

      MethodsPSNR /dBSSIMRMSE
      FBP18.180.39230.1232
      SART23.630.51760.0659
      WGAN27.170.85020.0438
      DDPM32.650.93190.0233
      DDDM38.590.95600.0118
      WDRG39.350.95740.0108
    • Table 5. Quantitative reconstruction results of different algorithms on BGA dataset

      View table

      Table 5. Quantitative reconstruction results of different algorithms on BGA dataset

      Algorithm

      slice 1

      slice 2

      PSNR /dB

      SSIM

      RMSE

      PSNR /dB

      SSIM

      RMSE

      FBP

      15.71

      0.1577

      0.1640

      13.33

      0.2841

      0.2154

      SART

      19.71

      0.1643

      0.1034

      17.87

      0.3604

      0.1278

      WGAN

      24.52

      0.9479

      0.0594

      20.88

      0.8250

      0.0903

      DDPM

      37.27

      0.9905

      0.0137

      25.87

      0.9779

      0.0509

      DDDM

      37.96

      0.9937

      0.0126

      28.55

      0.9582

      0.0374

      WDRG

      39.33

      0.9947

      0.0108

      33.39

      0.9905

      0.0214

    • Table 6. Quantitative reconstruction results of BGA dataset by different algorithms when NS=90

      View table

      Table 6. Quantitative reconstruction results of BGA dataset by different algorithms when NS=90

      Algorithm

      slice 1

      slice 2

      PSNR /dB

      SSIM

      RMSE

      PSNR /dB

      SSIM

      RMSE

      FBP

      10.79

      0.2106

      0.2888

      13.91

      0.1481

      0.2016

      SART

      16.54

      0.2837

      0.1489

      21.02

      0.1797

      0.0889

      WGAN

      23.11

      0.6424

      0.0699

      27.58

      0.4679

      0.0418

      DDPM

      30.52

      0.9593

      0.0298

      31.12

      0.9758

      0.0278

      DDDM

      33.13

      0.9815

      0.0220

      34.50

      0.9912

      0.0188

      WDRG

      36.17

      0.9734

      0.0155

      36.29

      0.9904

      0.0153

    Tools

    Get Citation

    Copy Citation Text

    Zhengheng Li, Chenyin Ni, Chunmin Zhang. Sparse Scanning Dual-Domain Image Reconstruction Model Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1434001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Nov. 19, 2024

    Accepted: Feb. 7, 2025

    Published Online: Jul. 17, 2025

    The Author Email: Zhengheng Li (li_zhengheng@njust.edu.cn), Chenyin Ni (chenyin.ni@njust.edu.cn)

    DOI:10.3788/LOP242283

    CSTR:32186.14.LOP242283

    Topics