Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1622001(2025)

Optical Design of Wide-Area High-Resolution Greenhouse Gas Imaging Spectrometer for Multi-Gas Collaborative Detection

Jinghui Huang1,2, Chunyu Liu1、*, Yi Ding1,2, Chen Wang1, Guoxiu Zhang3, and Yingming Zhao1,2
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Astronautics, Harbin Institute of Technology, Harbin 150000, Heilongjiang , China
  • show less
    Figures & Tables(21)
    Principle of remote sensing detection for greenhouse gases
    Spectral radiance of each channel. (a) Channel 1 with 405‒490 nm; (b) channel 2 with 747‒773 nm; (c) channel 3 with 1590‒1675 nm; (d) channel 4 with 1990‒2095 nm; (e) channel 5 with 2325‒2385 nm
    Structural design scheme of greenhouse gas imaging spectrometer
    Pupil vector transformation between off-axis system and coaxial system
    Schematic diagram of the multi-component coated prism color separation technology
    Three-dimensional layout of the telescopic system
    MTF of the telescopic system
    Spot diagrams of the telescopic system
    Two-dimensional diagram of the collimation system
    Two-dimensional diagrams of the dispersion system for different channels. (a) Channel 1 with 405‒490 nm; (b) channel 2 with 747‒773 nm; (c) channel 3 with 1590‒1675 nm; (d) channel 4 with 1990‒2095 nm; (e) channel 5 with 2325‒2385 nm
    Schematic diagram of the orthogonal combined prism color separation system
    Physical diagram of the spectrometer system
    Comparative analysis of ghost images in channel 1 of the spectrometer. (a) Normal imaging; (b) non-working band imaging
    MTF curves of each channel for the imaging spectrometer. (a) 447.5 nm; (b) 760 nm; (c) 1632.5 nm; (d) 2042.5 nm;
    Spot diagrams of each channel for the imaging spectrometer. (a) Channel 1 with 405.55‒406.65 nm; (b) channel 2 with 747.00‒747.22 nm; (c) channel 3 with 1632.27‒1632.73 nm; (d) channel 4 with 2042.20‒2042.80 nm; (e) channel 5 with 2354.75‒2355.25 nm
    • Table 1. Designed indicators of the front imaging objective lens

      View table

      Table 1. Designed indicators of the front imaging objective lens

      ParameterValue
      Height /km700
      Spectral range /nm405‒490,747‒773,1590‒1675,1990‒2095,2325‒2385
      F#<2.5
      Swath width /km170
      Field of view /(°)14
      GSD /m500
      Detector’s pixel size /μm30
      Sampling2×2 binning
    • Table 2. Designed indicators of the spectral splitting system

      View table

      Table 2. Designed indicators of the spectral splitting system

      ParameterChannel 1Channel 2Channel 3Channel 4Channel 5
      Spectral range /nm405‒490747‒7731590‒16751990‒20952325‒2385
      Spectral resolution /nm0.550.110.230.300.25
      Spectral number of channel150231365350240
      Dispersion length /mm9.2714.1822.1721.0024.40
    • Table 3. Free-form surface parameters of the primary mirror

      View table

      Table 3. Free-form surface parameters of the primary mirror

      Zernike itemParameter value
      93.689×10-4
      10-1.063×10-13
      110.8515
      12-1.652×10-7
      139.688×10-13
    • Table 4. Main parameters of the grating

      View table

      Table 4. Main parameters of the grating

      Wave band /nmIncident angle /(°)Grating constant /(line·mm-1Diffraction order
      405‒49026.76601
      747‒77334.51823-1
      1590‒167520.07601
      1990‒209522.5628-1
      2325‒2385-57.07351
    • Table 5. Main parameters of each coating layer

      View table

      Table 5. Main parameters of each coating layer

      CoatingReflection band /nmReflectance in the operational wavelength band /%Out-of-band reflectance /%
      1405‒773952
      21590‒2095982
      3405‒490943
      4747‒773953
      51590‒1675982
    • Table 6. Tolerance allocation results of each channel for the system

      View table

      Table 6. Tolerance allocation results of each channel for the system

      Type of toleranceChannel 1Channel 2Channel 3Channel 4Channel 5
      Number of aperture21211
      Thickness tolerance /mm0.020.010.010.010.02
      Surface tilt /(°)0.010.010.010.020.02
      Surface eccentricity /mm0.020.030.020.020.02
      Element tilt /(°)0.010.010.010.010.02
      Element eccentricity /mm0.020.020.020.020.02
    Tools

    Get Citation

    Copy Citation Text

    Jinghui Huang, Chunyu Liu, Yi Ding, Chen Wang, Guoxiu Zhang, Yingming Zhao. Optical Design of Wide-Area High-Resolution Greenhouse Gas Imaging Spectrometer for Multi-Gas Collaborative Detection[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1622001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Feb. 5, 2025

    Accepted: Mar. 28, 2025

    Published Online: Jul. 24, 2025

    The Author Email: Chunyu Liu (mmliucy@163.com)

    DOI:10.3788/LOP250596

    CSTR:32186.14.LOP250596

    Topics