Optical Technique, Volume. 48, Issue 3, 379(2022)
Algorithm of RX anomaly target detection for hyperspectral imagery based on low-rank tensor decomposition
[1] [1] L X Zhu, G J Wen, S H Qiu, Low-rank and sparse matrix decomposition with cluster weighting for hyperspectral anomaly detection[J]. Remote Sens.,2018,10(5):707-724.
[3] [3] I S Reed, X Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans. Acoust., Speech, Signal Process,1990,38(10):1760-1770.
[4] [4] Maryam Imani. RX anomaly detector with rectified background[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(8):1313-1317.
[5] [5] Q Guo, B Zhang, Q Ran, et al. Weighted- RXD and linear filter-based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,2014,7(6):2351-2366.
[6] [6] H Kwon, N M Nasrabadi. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sens.,2005,43(2):388-397.
[7] [7] A P Schaum. Hyperspectral anomaly detection beyond RX[C]∥Proceedings of SPIE-The International Society for Optical Engineering, OrlandoFL, USA,2007:656502.1-656502.13.
[8] [8] Yuan Zongze, Sun Hao, Ji Kefeng, et al. Local sparsity divergence for hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters,2014,11(10):1697-1701.
[10] [10] L Li, W Li, Q Du, R Tao. Low-rank and sparse decomposition with mixture of gaussian for hyperspectral anomaly detection[J]. IEEE Transactions on Cybernetics.,2020,51(9):4363-4372.
[11] [11] Yang Xu, Zebin Wu, Jun Li, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions On Geoscience And Remote Sensing,2016,54(6):1990-2000.
[12] [12] Y X Yang, J Q Zhang, S Z Song, et al. Low-rank and sparse matrix decomposition with orthogonal subspace projection based background suppression for hyperspectral anomaly detection[J].IEEE Geoscience and Remote Sensing Letters.,2020,17(8):1378-1382.
[13] [13] Lili Zhang, Baozhi Cheng, Yuwei Deng. A tensor-based adaptive subspace detector for hyperspectral anomaly detection[J]. International Journal of Remote Sensing,2017,39(8):2366-2382.
[14] [14] Y X Zhang, B Du, L P Zhang, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(3):1376-1389.
[15] [15] X X Ma, X R Zhang, X Tang, et al. Hyperspectral anomaly detection based on low-rank representation with data-driven projection and dictionary construction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13(5):2226-2239.
[16] [16] H Zhang, W He, L Zhang, et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Trans. Geosci. Remote Sens.,2014,52(8):4729-4743.
[17] [17] Yong Chen, Wei He, Naoto Yokoya, et al. Hyperspectral image restoration using weighted group sparsity- regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics,2020,50(8):3556-3570.
[18] [18] Yao Wang, Jiangjun Peng, Qian Zhao, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(4):1227-1243.
[19] [19] C I Chang, X Jiao, C C Wu, et al. Component analysis based unsupervised linear spectral mixture analysis for hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sens.,2016,49(11):4123-4137.
Get Citation
Copy Citation Text
CHENG Baozhi, YANG Guihua, WANG Fengpin, JIA Meijuan. Algorithm of RX anomaly target detection for hyperspectral imagery based on low-rank tensor decomposition[J]. Optical Technique, 2022, 48(3): 379
Category:
Received: Oct. 1, 2021
Accepted: --
Published Online: Jan. 20, 2023
The Author Email:
CSTR:32186.14.