Optics and Precision Engineering, Volume. 31, Issue 21, 3096(2023)

Progress in spectral imaging technology of digital micromirror devices

Yingchao SHI1,2, Luming ZHANG1,2, Fei CHEN1,2, Weizheng YUAN1,2, and Yiting YU1,2、*
Author Affiliations
  • 1College of Mechanical and Electrical Engineering, Ningbo Institute of Northwestern Polytechnical University, Xi'an70072, China
  • 2Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Key Laboratory of Micro and Nano-Electro-Mechanical Systems of Shaanxi Province, Northwestern Polytechnical University, Xi'an71007, China
  • show less
    References(81)

    [1] GOETZ A F H. Three decades of hyperspectral remote sensing of the Earth: a personal view[J]. Remote Sensing of Environment, 113, S5-S16(2009).

    [2] GREEN R O, EASTWOOD M L, SARTURE C M et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 65, 227-248(1998).

    [3] BASEDOW R W, CARMER D C, ANDERSON M E. HYDICE system: implementation and performance[C], 2480, 258-267(1995).

    [4] FORD B K, DESCOUR M R, LYNCH R M. Large-image-format computed tomography imaging spectrometer for fluorescence microscopy[J]. Optics Express, 9, 444-453(2001).

    [5] BEST F A, REVERCOMB H E, TOBIN D C et al. Performance verification of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system[C], 6405(2006).

    [6] DOUGLASS M. DMD reliability: a MEMS success story[C], 498, 1-11(2003).

    [7] [7] 周子逸, 董贤子, 郑美玲. 数字微镜无掩模光刻技术进展及应用[J]. 激光与光电子学进展, 2022, 59(9): 0922030. doi: 10.3788/LOP202259.0922030ZHOUZ Y, DONGX Z, ZHENGM L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922030.(in Chinese). doi: 10.3788/LOP202259.0922030

    [8] [8] 陆锦洪, 谢向生, 张培晴, 等. 基于数字微镜器件亚微米制备技术研究[J]. 光子学报, 2010, 39(4):600-604. doi: 10.3788/gzxb20103904.0600LUJ H, XIEX S, ZHANGP Q, et al. Submicron-sized optical fabrication with DMD based lithography[J]. Acta Photonica Sinica, 2010, 39(4):600-604.(in Chinese). doi: 10.3788/gzxb20103904.0600

    [9] MILLS B, FEINAEUGLE M, SONES C L et al. Sub-micron-scale femtosecond laser ablation using a digital micromirror device[J]. Journal of Micromechanics and Microengineering, 23(2013).

    [10] CHENG J Y, GU C L, ZHANG D P et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device[J]. Optics Letters, 40, 4875-4878(2015).

    [11] REN Y X, LU R D, GONG L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 527, 447-470(2015).

    [12] SCHOLES S, KARA R, PINNELL J et al. Structured light with digital micromirror devices: a guide to best practice[J]. Optical Engineering, 59(2019).

    [13] ZHU L, CAO Z Z, FU S N et al. Double-light-path multiplexing enabled light shaping efficiency enhancement for digital micromirror device[C], D(2020).

    [14] GENG Q, GU C L, CHENG J Y et al. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging[J]. Optica, 4, 674(2017).

    [15] CHLIPALA M, KOZACKI T. Color reconstructions of real objects in DMD holographic display with LED illumination[C], D(2019).

    [16] [16] 张一, 余卿, 张昆, 等. 基于数字微镜器件的并行彩色共聚焦测量系统[J]. 光学 精密工程, 2020, 28(4):859-866.ZHANGY, YUQ, ZHANGK, et al. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Opt. Precision Eng., 2020, 28(4):859-866. (in Chinese)

    [17] [17] 余卿, 叶瑞芳, 范伟. 基于数字微镜器件实现共焦测量的结构光参数[J]. 光学 精密工程, 2015, 23(5):1272-1278. doi: 10.3788/ope.20152305.1272YUQ, YER F, FANW. Parameters of structured lights of DMD used in confocal measurement[J]. Opt. Precision Eng., 2015, 23(5):1272-1278.(in Chinese). doi: 10.3788/ope.20152305.1272

    [18] ARABLOUEI R, GOAN E, GENSEMER S et al. Fast and robust pushbroom hyperspectral imaging via DMD-based scanning[C], 9948(2016).

    [19] [19] 张昊. 基于DMD的编码孔径成像光谱仪关键技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2016. doi: 10.16818/j.issn1001-5868.2016.05.029ZHANGH. Research on Key Technologies of Coded Aperture Imaging Spectrometer Based on DMD[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2016. (in Chinese). doi: 10.16818/j.issn1001-5868.2016.05.029

    [21] BANSAL V, SAGGAU P. Digital micromirror devices: principles and applications in imaging[J]. Cold Spring Harbor Protocols, 404-411(2013).

    [22] [22] 姚雪峰, 高毅, 龙兵, 等. 数字微镜器件(DMD)杂散光特性测试方法及装置[J]. 中国光学, 2022, 15(2): 339-347. doi: 10.37188/CO.2021-0132YAOX F, GAOY, LONGB, et al. Method and device for testing stray light characteristics of Digital Micro-mirror Device(DMD)[J]. Chinese Optics, 2022, 15(2): 339-347.(in Chinese). doi: 10.37188/CO.2021-0132

    [25] WAGNER E P II, SMITH B W, MADDEN S et al. Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulation[J]. Applied Spectroscopy, 49, 1715-1719(1995).

    [26] DEVERSE R A, HAMMAKER R M, FATELEY W G. Realization of the hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer[J]. Applied Spectroscopy, 54, 1751-1758(2000).

    [27] ROBERT M H, RICHARD A D, DANIEL J A et al[M]. Handbook of vibrational spectroscopy, 1-8(2006).

    [28] [28] 郭媛君. 基于DMD的微小型近红外光谱仪光谱信息处理及其应用软件[D]. 重庆: 重庆大学, 2011.GUOY J. Spectral Information Processing of Miniature Near Infrared Spectrometer Based on DMD and its Application Software[D]. Chongqing: Chongqing University, 2011. (in Chinese)

    [29] [29] 莫祥霞. 基于DMD的微小型近红外光谱仪系统研究[D]. 重庆: 重庆大学,2011.MOX X. Research on Miniature Near Infrared Spectrometer System Based on DMD[D]. Chongqing: Chongqing University,2011. (in Chinese)

    [30] [30] 党博石, 刘华, 王晓朵, 等. 新型阿达玛变换光谱仪[J]. 光子学报, 2013, 42(8):902-907. doi: 10.3788/gzxb20134208.0902DANGB SH, LIUH, WANGX D, et al. A new kind of hadamard transform spectrometer[J]. Acta Photonica Sinica, 2013, 42(8):902-907.(in Chinese). doi: 10.3788/gzxb20134208.0902

    [31] [31] 王晓朵. 基于DMD的哈达玛变换近红外光谱仪的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.WANGX D. Study on Hadamard Transform Near Infrared Spectrometer Based on DMD[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)

    [32] [32] 许家林. 基于DMD的阿达玛变换近红外光谱仪关键技术研究[D]. 北京: 中国科学院大学, 2017. doi: 10.1016/j.optcom.2016.07.086XUJ L. Research on Key Technologies of Hadamard Transform Near Infrared Spectrometer Based on DMD[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese). doi: 10.1016/j.optcom.2016.07.086

    [33] [33] 王莹, 刘华, 李金环, 等. 基于DMD的近红外光谱仪的研究[J]. 红外与激光工程, 2019, 48(6): 422-430. doi: 10.3788/irla201948.0620002WANGY, LIUH, LIJ H, et al. Research on near-infrared spectrometer based on DMD[J]. Infrared and Laser Engineering, 2019, 48(6): 422-430.(in Chinese). doi: 10.3788/irla201948.0620002

    [34] KEARNEY K J, NINKOV Z. Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy[C], 3292, 81-92(1998).

    [35] DEVERSE R A, HAMMAKER R M, FATELEY W G. Hadamard transform Raman imagery with a digital micro-mirror array[J]. Vibrational Spectroscopy, 19, 177-186(1999).

    [36] FATELEY W G, HAMMAKER R M, DEVERSE R A. Modulations used to transmit information in spectrometry and imaging[J]. Journal of Molecular Structure, 550/551, 117-122(2000).

    [37] KEARNEY K, CORIO M A, NINKOV Z. Imaging spectroscopy with digital micromirrors[C], 3965, 11-21(2000).

    [38] WEHLBURG C M, WEHLBURG J C, GENTRY S M et al. Optimization and characterization of an imaging Hadamard spectrometer[C], 4381, 506-515(2001).

    [39] SMITH M W, SMITH J L, TORRINGTON G K et al. Theoretical description and numerical simulations of a simplified Hadamard transform imaging spectrometer[C]. Seattle, 4816, 372-380(2002).

    [40] FATELEY W, HAMMAKER R M, DEVERSE R A et al. The other spectroscopy: demonstration of a new de-dispersion imaging spectrograph[J]. Vibrational Spectroscopy, 29, 163-170(2002).

    [41] CHRISTENSEN M P, EULISS G W, MCFADDEN M J et al. ACTIVE-EYES: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging[J]. Applied Optics, 41, 6093(2002).

    [42] VUJKOVIC-CVIJIN P, GOLDSTEIN N, FOX M J et al. Adaptive spectral imager for space-based sensing[C], 6206(2006).

    [43] GOLDSTEIN N, VUJKOVIC-CVIJIN P et al. DMD-based adaptive spectral imagers for hyperspectral imagery and direct detection of spectral signatures[C], 7210(2009).

    [44] GOLDSTEIN N, ADLER-GOLDEN S et al. Infrared adaptive spectral imagers for direct detection of spectral signatures and hyperspectral imagery[C], 8618(2013).

    [45] GOLDSTEIN N, PETER BST, GROT J et al. Portable, stand-off spectral imaging camera for detection of effluents and residues[C]. Maryland, 9482(2015).

    [46] [46] 孙鑫. 可见光多通道目标探测技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2011.SUNX. Research on Visible Multi-channel Target Detection Technology[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2011. (in Chinese)

    [47] SUN X, HU B L, LI L B. An engineering prototype of Hadamard transform spectral imager based on Digital Micro-mirror Device[J]. Optics & Laser Technology, 44, 210-217(2012).

    [48] LOVE S P. Programmable matched filter and Hadamard transform hyperspectral imagers based on micromirror arrays[C], 7210(2009).

    [49] LOVE S P, GRAFF D L. Full-frame programmable spectral filters based on micromirror arrays[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(2014).

    [50] GRAFF D L, LOVE S P. Adaptive hyperspectral imaging with a MEMS-based full-frame programmable spectral filter[C]. Maryland, 9101(2014).

    [51] GRAFF D L, LOVE S P. Toward real-time spectral imaging for chemical detection with a digital micromirror device-based programmable spectral filter[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(2013).

    [52] TAKHAR D, LASKA J N, WAKIN M B et al. A new compressive imaging camera architecture using optical-domain compression[C], 6065, 43-52(2006).

    [53] DUARTE M F, DAVENPORT M A, TAKHAR D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [54] LAM CHAN W, CHARAN K, TAKHAR D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [55] WU Y H, MIRZA I O, ARCE G R et al. Demonstration of a DMD-based compressive sensing (CS) spectral imaging system[C]. Maryland. Washington, D.C.: OSA(2011).

    [56] WU Y H, MIRZA I O, ARCE G R et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 36, 2692-2694(2011).

    [57] WU Y H, MIRZA I O, YE P et al. Development of a DMD-based compressive sampling hyperspectral imaging (CS-HSI) system[C], 7932(2011).

    [58] LIN X, WETZSTEIN G, LIU Y B et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 39, 2044-2047(2014).

    [59] XU C, XU T F, YAN G et al. Super-resolution compressive spectral imaging via two-tone adaptive coding: publisher's note[J]. Photonics Research, 8, 892(2020).

    [60] ZHOU J J, YANG Y, LI L et al. Developing, integrating and validating a compressive hyperspectral video imager[C], 11423(2020).

    [61] [61] 马翠. 基于数字微镜的编码成像光谱仪的研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018.MAC. Research on Coded Imaging Spectrometer Based on Digital Micromirror[D]. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2018. (in Chinese)

    [62] WUTTIG A, RIESENBERG R. Sensitive Hadamard transform imaging spectrometer with a simple MEMS[C], 4881(2003).

    [63] BEDNARKIEWICZ A, WHELAN M P. Microscopic fluorescence lifetime and hyperspectral imaging with digital micromirror illuminator[C], 6630(2007).

    [64] HSU Y J, CHEN C C, HUANG C H et al. Line-scanning hyperspectral imaging based on structured illumination optical sectioning[J]. Biomedical Optics Express, 8, 3005-3016(2017).

    [65] DONG X, XIAO X C, PAN Y N et al. DMD-based hyperspectral imaging system with tunable spatial and spectral resolution[J]. Optics Express, 27, 16995-17006(2019).

    [66] DONG X, TONG G, SONG X K et al. DMD-based hyperspectral microscopy with flexible multiline parallel scanning[J]. Microsystems & Nanoengineering, 7, 68(2021).

    [67] QI Y, HENG L Z, LI L et al. Hadamard transform-based hyperspectral imaging using a single-pixel detector[J]. Optics Express, 28, 16126(2020).

    [68] BARNARD K J, BOREMAN G D, PAPE D R. Crosstalk model of a deformable-mirror-based infrared scene projector[J]. Optical Engineering, 33, 140-149(1994).

    [69] MEURET Y, DE VISSCHERE P. Contrast-improving methods for digital micromirror device projectors[J]. Optical Engineering, 42, 840-845(2003).

    [70] RENTZ DUPUIS J, MANSUR D J. Considerations for DMDs operating in the infrared[C](2012).

    [71] [71] 陈笑, 颜玢玢, 宋菲君, 等. DMD光栅的衍射特性及其在可调谐激光中的应用[J]. 光学学报, 2012, 32(7): 0705003. doi: 10.3788/aos201232.0705003CHENX, YANF F, SONGF J, et al. Diffractive properties of DMD gratings and its new application in tunable fiber lasers[J]. Acta Optica Sinica, 2012, 32(7): 0705003.(in Chinese). doi: 10.3788/aos201232.0705003

    [72] XIONG Z, LIU H, LU Z W. Diffraction analysis of digital micromirror device at coherent illumination[C](2013).

    [73] XIONG Z, LIU H, TAN X Q et al. Diffraction analysis of digital micromirror device in maskless photolithography system[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(2014).

    [74] HAN Q, ZHANG J Z, WANG J et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared[J]. Applied Optics, 55, 8016-8021(2016).

    [75] DONG X, SHI Y C, XIAO X C et al. Non-paraxial diffraction analysis for developing DMD-based optical systems[J]. Optics Letters, 47, 4758-4761(2022).

    [76] LIU J D, ZAOUTER C, LIU X L et al. Coded-aperture broadband light field imaging using digital micromirror devices[C], 6, 2021(2021).

    [77] [77] 张卫平, 何小荣. 光栅的汇合光谱特性与双光栅成象效应[J]. 中国科学G辑, 2006, 36(5):556-560.ZHANGW P, HEX R. Confluence spectral characteristics of gratings and imaging effect of double gratings[J]. Science in China (Series G), 2006, 36(5):556-560.(in Chinese)

    [78] [78] 武鑫. 基于DMD的自适应分类光谱成像技术光学系统设计研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.WUX. Research on Optical System Design of Adaptive Classified Spectral Imaging Technology Based on DMD[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2020. (in Chinese)

    [79] [79] 王月旗. 基于DMD的编码孔径光谱成像光学系统设计[D]. 长春: 长春理工大学, 2020.WANGY Q. Design of Coded Aperture Spectral Imaging Optical System Based on DMD[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)

    [80] [80] 赵雨时, 贺文俊, 刘智颖, 等. 光谱维编码中红外光谱成像系统的光学设计[J]. 红外与激光工程, 2021, 50(12): 3788/IRLA20210700.ZHAOY SH, HEW J, LIUZH Y, et al. Optical design of infrared spectral imaging system in spectral dimension coding[J]. Infrared and Laser Engineering, 2021, 50(12): 3788/IRLA20210700.(in Chinese)

    [81] [81] 杨莹, 胡炳樑, 李立波, 等. Hadamard编码红外光谱成像系统设计[J]. 光学 精密工程, 2022, 30(6): 641-650. doi: 10.37188/OPE.20223006.0641YANGY, HUB L, LIL B, et al. Design of MWIR hadamard coded imaging spectrometer[J]. Opt. Precision Eng., 2022, 30(6): 641-650.(in Chinese). doi: 10.37188/OPE.20223006.0641

    Tools

    Get Citation

    Copy Citation Text

    Yingchao SHI, Luming ZHANG, Fei CHEN, Weizheng YUAN, Yiting YU. Progress in spectral imaging technology of digital micromirror devices[J]. Optics and Precision Engineering, 2023, 31(21): 3096

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 10, 2023

    Accepted: --

    Published Online: Jan. 5, 2024

    The Author Email: Yiting YU (yyt@nwpu.edu.cn)

    DOI:10.37188/OPE.20233121.3096

    Topics