Chinese Optics, Volume. 16, Issue 2, 458(2023)
Improving sensitivity by multi-coherence of magnetic surface plasmons
[1] KOYA A N, ZHU X CH, OHANNESIAN N, et al. Nanoporous metals: from plasmonic properties to applications in enhanced spectroscopy and photocatalysis[J]. ACS Nano, 15, 6038-6060(2021).
[2] HE ZH H, XUE W W, CUI W, et al. Tunable fano resonance and enhanced sensing in a simple Au/TiO2 hybrid metasurface[J]. Nanomaterials, 10, 687(2020).
[3] PALERMO G, SREEKANTH K V, MACCAFERRI N, et al. Hyperbolic dispersion metasurfaces for molecular biosensing[J]. Nanophotonics, 10, 295-314(2021).
[4] AHMADIVAND A, GERISLIOGLU B, RAMEZANI Z, et al. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins[J]. Biosensors and Bioelectronics, 177, 112971(2021).
[5] SHEN B L, LIU L W, LI Y P, et al. Nonlinear spectral-imaging study of second- and third-harmonic enhancements by surface-lattice resonances[J]. Advanced Optical Materials, 8, 1901981(2020).
[6] GUAN J, SAGAR L K, LI R, et al. Quantum dot-plasmon lasing with controlled polarization patterns[J]. ACS Nano, 14, 3426-3433(2020).
[7] DORRAH A H, CAPASSO F. Tunable structured light with flat optics[J]. Science, 376, eabi6860(2022).
[8] PANDEY P S, RAGHUWANSHI S K, KUMAR S. Recent advances in two-dimensional materials-based kretschmann configuration for SPR sensors: a review[J]. IEEE Sensors Journal, 22, 1069-1080(2022).
[9] XUE T Y, LIANG W Y, LI Y W, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 10, 28(2019).
[10] BAGHBADORANI H K, BARVESTANI J. Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes[J]. Applied Surface Science, 537, 147730(2021).
[11] LIU F X, SONG B X, SU G X, et al. Sculpting extreme electromagnetic field enhancement in free space for molecule sensing[J]. Small, 14, 1801146(2018).
[12] CATTONI A, GHENUCHE P, HAGHIRI-GOSNET A M, et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Letters, 11, 3557-3563(2011).
[13] MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 111, 3828-3857(2011).
[14] NUGROHO F A A, ALBINSSON D, ANTOSIEWICZ T J, et al. Plasmonic metasurface for spatially resolved optical sensing in three dimensions[J]. ACS Nano, 14, 2345-2353(2020).
[15] BUKASOV R, SHUMAKER-PARRY J S. Highly tunable infrared extinction properties of gold nanocrescents[J]. Nano Letters, 7, 1113-1118(2007).
[16] HOU Y M. Coherence of magnetic resonators in a metamaterial[J]. AIP Advances, 3, 122119(2013).
[17] HOU Y M. Interaction of magnetic resonators studied by the magnetic field enhancement[J]. AIP Advances, 3, 122118(2013).
[18] KRAVETS V G, SCHEDIN F, GRIGORENKO A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles[J]. Physical Review Letters, 101, 087403(2008).
[19] LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature Photonics, 11, 543-554(2017).
[20] LIMONOV M F. Fano resonance for applications[J]. Advances in Optics and Photonics, 13, 703-771(2021).
[21] XIAO SH Y, WANG T, LIU T T, et al. Active metamaterials and metadevices: a review[J]. Journal of Physics D:Applied Physics, 53, 503002(2020).
[22] WANG B Q, YU P, WANG W H, et al. High-Q plasmonic resonances: fundamentals and applications[J]. Advanced Optical Materials, 9, 2001520(2021).
[23] UTYUSHEV A D, ZAKOMIRNYI V I, RASSKAZOV I L. Collective lattice resonances: plasmonics and beyond[J]. Reviews in Physics, 6, 100051(2021).
[24] KRAVETS V G, KABASHIN A V, BARNES W L, et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 118, 5912-5951(2018).
[25] DONG J W, CHEN SH, HUANG G F, et al. Low-index-contrast dielectric lattices on metal for refractometric sensing[J]. Advanced Optical Materials, 8, 2000877(2020).
[26] CHEN J, ZHANG Q, PENG CH, et al. Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing[J]. IEEE Photonics Technology Letters, 30, 728-731(2018).
[27] LIANG L, ZHENG Q L, WEN L, et al. Miniaturized spectroscopy with tunable and sensitive plasmonic structures[J]. Optics Letters, 46, 4264-4267(2021).
[28] WANG H, WANG X L, YAN CH, et al. Full color generation using silver tandem nanodisks[J]. ACS Nano, 11, 4419-4427(2017).
[29] DAQIQEH REZAEI S, DONG ZH G, YOU EN CHAN J, et al. Nanophotonic structural colors[J]. ACS Photonics, 8, 18-33(2021).
[30] SHI X ZH, CHEN CH SH, LIU S H, et al. Nonvolatile, reconfigurable and narrowband mid-infrared filter based on surface lattice resonance in phase-change Ge2Sb2Te5[J]. Nanomaterials, 10, 2530(2020).
[31] MURAVITSKAYA A, GOKARNA A, MOVSESYAN A, et al. Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles[J]. Nanoscale, 12, 6394-6402(2020).
[32] SHEN Y, ZHOU J H, LIU T R, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 4, 2381(2013).
[33] LINDEN S, ENKRICH C, WEGENER M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 306, 1351-1353(2004).
[34] ZHU Y H, ZHANG H, LI D M, et al. Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing[J]. Optics Express, 26, 9148-9154(2018).
[35] CHEN J, FAN W F, ZHANG T, et al. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing[J]. Optics Express, 25, 3675-3681(2017).
[36] CHEN X SH, PARK H R, LINDQUIST N C, et al. Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit[J]. Scientific Reports, 4, 6722(2014).
[37] RHIE J, LEE D, BAHK Y M, et al. Control of optical nanometer gap shapes made via standard lithography using atomic layer deposition[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 17, 023504(2018).
[38] JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).
[39] HOSSAIN M B, RANA M M, ABDULRAZAK L F, et al. Design and analysis of graphene–MoS2 hybrid layer based SPR biosensor with TiO2–SiO2 nano film for formalin detection: numerical approach[J]. Optical and Quantum Electronics, 51, 195(2019).
[40] PANDEY P S, SINGH Y, RAGHUWANSHI S K. Theoretical analysis of the LRSPR sensor with enhance FOM for low refractive index detection using MXene and fluorinated graphene[J]. IEEE Sensors Journal, 21, 23979-23986(2021).
[41] MUDGAL N, SAHARIA A, AGARWAL A, et al. ZnO and Bi-metallic (Ag–Au) layers based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications[J]. IETE Journal of Research, 1-8(2020).
[42] HOSSAIN M M, TALUKDER M A. Gate-controlled graphene surface plasmon resonance glucose sensor[J]. Optics Communications, 493, 126994(2021).
Get Citation
Copy Citation Text
Zong-meng YANG, Qian XING, Yi-an CHEN, Yu-min HOU. Improving sensitivity by multi-coherence of magnetic surface plasmons[J]. Chinese Optics, 2023, 16(2): 458
Category: Original Article
Received: May. 24, 2022
Accepted: --
Published Online: Apr. 4, 2023
The Author Email: Yu-min HOU (ymhou@pku.edu.cn)