Acta Optica Sinica, Volume. 43, Issue 2, 0210001(2023)
Super-Resolution Image Reconstruction Method for Micro Defects of Metal Engine Blades
[1] Zeng Y Y, Xie G S, Zhang J C. Weak-light image segmentation based on intercept histogram and Otsu fusion[J]. Laser&Optoelectronics Progress, 58, 2010016(2021).
[2] Wang Y, Chen J, Han Y J et al. Combining attention mechanism and Retinex model to enhance low-light images[J]. Computers & Graphics, 104, 95-105(2022).
[3] Al Sobbahi R, Tekli J. Low-light homomorphic filtering network for integrating image enhancement and classification[J]. Signal Processing: Image Communication, 100, 116527(2022).
[4] Wang J, Zhang X Y, Cai Y F et al. CT image segmentation method combining wavelet transform and RSF model[J]. Acta Optica Sinica, 40, 2110003(2020).
[5] Tang B, Kong J Y, Wang X D et al. Image enhancement and segmentation algorithm for low-contrast small defects on steel plate[J]. Journal of Image and Graphics, 25, 81-91(2020).
[6] Liu F J, Hua Z, Li J J et al. Low-light image enhancement network based on recursive network[J]. Frontiers in Neurorobotics, 16, 836551(2022).
[7] Hao P C, Yang M, Zheng N N. Subjective low-light image enhancement based on a foreground saliency map model[J]. Multimedia Tools and Applications, 81, 4961-4978(2022).
[8] Martínez S S, Vázquez C O, García J G et al. Quality inspection of machined metal parts using an image fusion technique[J]. Measurement, 111, 374-383(2017).
[9] Liu G T, Zhou J H, Li T et al. Infrared and visible image fusion through hybrid curvature filtering image decomposition[J]. Infrared Physics & Technology, 120, 103938(2022).
[10] Xiang Z, Wu H X, Zhou D. Metallic debossed characters industrial online non-segmentation identification based on improved multi‐scale image fusion enhancement and deep neural network[J]. IET Image Processing, 16, 852-868(2022).
[11] Dong C, Loy C C, He K M et al. Learning a deep convolutional network for image super-resolution[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014, 8692, 184-199(2014).
[12] Hu F, Lin Y, Hou M D et al. Super-resolution reconstruction of cytoskeleton image based on deep learning[J]. Acta Optica Sinica, 40, 2410001(2020).
[13] Ward C M, Harguess J, Crabb B et al. Image quality assessment for determining efficacy and limitations of Super-Resolution Convolutional Neural Network (SRCNN)[J]. Proceedings of SPIE, 10396, 1039605(2017).
[14] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).
[15] Zhang Y L, Tian Y P, Kong Y et al. Residual dense network for image super-resolution[C], 2472-2481(2018).
[16] Yan H, Zhao Q F, Xie M et al. Edge detection and repair of PCBA components based on adaptive canny operator[J]. Acta Optica Sinica, 41, 0515003(2021).
[17] Cui H H, Xu Z L, Yang Y P et al. A circular target stability detection method based on deep learning image super-resolution[J]. China Mechanical Engineering, 32, 2861-2867(2021).
Get Citation
Copy Citation Text
Xinxin Ge, Haihua Cui, Zhenlong Xu, Minqi He, Xuezhi Han. Super-Resolution Image Reconstruction Method for Micro Defects of Metal Engine Blades[J]. Acta Optica Sinica, 2023, 43(2): 0210001
Category: Image Processing
Received: Jun. 6, 2022
Accepted: Jul. 29, 2022
Published Online: Feb. 7, 2023
The Author Email: Cui Haihua (cuihh@nuaa.edu.cn)