Acta Optica Sinica, Volume. 43, Issue 11, 1124004(2023)
2 bit Optically Controlled Programmable Terahertz Metasurface Based on Spatially Encoded Structured Light
[1] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).
[2] Tsilipakos O, Tasolamprou A C, Pitilakis A et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers[J]. Advanced Optical Materials, 8, 2000783(2020).
[3] Wan X, Qi M Q, Chen T Y et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 6, 1-8(2016).
[4] Wu S R, Lai K L, Wang C M. Passive temperature control based on a phase change metasurface[J]. Scientific Reports, 8, 1-6(2018).
[5] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).
[6] Yang S, Wang J Y, Zhang T et al. Temperature-voltage bi-controllable broadband terahertz polarization conversion/absorption metasurface[J]. Acta Optica Sinica, 42, 0824001(2022).
[7] Zhang S J, Chen X Y, Liu K et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 3, 1-14(2022).
[8] Cheng Y Z, Gong R Z, Zhao J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves[J]. Optical Materials, 62, 28-33(2016).
[9] Chanana A, Liu X J, Zhang C et al. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites[J]. Science Advances, 4, eaar7353(2018).
[10] Gong C, Su W M, Zhang Y et al. An active metamaterials controlled by structured light illumination[J]. Optik, 171, 204-209(2018).
[11] Zhang X G, Jiang W X, Jiang H L et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 3, 165-171(2020).
[12] Bai Z X, Chen H, Zhu Z H et al. Diamond Raman oscillator achieves first structured beam output[J]. Chinese Journal of Lasers, 49, 2116002(2022).
[13] Zeng X Y, Wu S Q, Chen B. Hybrid-coded phase-shifting profilometry for structured light measurement[J]. Laser & Optoelectronics Progress, 59, 1312002(2022).
[14] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[15] Sun J, Timurdogan E, Yaacobi A et al. Large-scale silicon photonic circuits for optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 264-278(2014).
[16] Hu J, Bandyopadhyay S, Liu Y H et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 8, 586087(2021).
[17] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).
[18] Ding J, An S S, Zheng B W et al. Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths[J]. Advanced Optical Materials, 5, 1700079(2017).
[19] Yan L B, Zhu W M, Wu P C et al. Adaptable metasurface for dynamic anomalous reflection[J]. Applied Physics Letters, 110, 201904(2017).
[20] Xu H X, Hu G W, Li Y et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 8, 1-10(2019).
[21] Zhang X Y, Gu J Q, Shi W Q. Terahertz metasurface with bound states in continuum based on metal split ring resonator[J]. Chinese Journal of Lasers, 50, 0214001(2023).
[22] Qi Y P, Zhang B H, Ding J H et al. Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and applications of such metasurfaces[J]. Chinese Physics B, 30, 024211(2021).
[23] Gao Y S, Fan Y B, Wang Y J et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 18, 8054-8061(2018).
[24] Ji H Y, Zhang B, Wang G C et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure[J]. Optics Communications, 412, 37-40(2018).
[25] Xu Z C, Gao R M, Ding C F et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 344, 125-128(2015).
[26] Venkatesh S, Lu X Y, Saeidi H et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 3, 785-793(2020).
[27] Zhang X Q, Tian Z, Yue W S et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 25, 4567-4572(2013).
[28] Bao L, Wu R Y, Fu X J et al. Multi-beam forming and controls by metasurface with phase and amplitude modulations[J]. IEEE Transactions on Antennas and Propagation, 67, 6680-6685(2019).
[29] Wan X, Xiao Q, Zhang Y Z et al. Reconfigurable sum and difference beams based on a binary programmable metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 20, 381-385(2021).
[30] Zhang F H, Saifullah Y, Yang G M et al. 1-bit, 2-bit polarization insensitive reflection programable metasurface[C], 1899-1900(2019).
[31] Zhang X H, Zhang H, Su J X et al. 2-Bit programmable digital metasurface for controlling electromagnetic wave[C](2018).
[32] Kong X K, Wang Q, Jiang S L et al. A metasurface composed of 3-bit coding linear polarization conversion elements and its application to RCS reduction of patch antenna[J]. Scientific Reports, 10, 1-10(2020).
[33] Zhang L, Cui T J. Angle-insensitive 2-bit programmable coding metasurface with wide incident angles[C], 932-934(2020).
[34] Fu X J, Shi L, Yang J et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces[J]. ACS Applied Materials & Interfaces, 14, 22287-22294(2022).
[35] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[36] Gao X, Tang L G, Wu X B et al. Broadband and high-efficiency ultrathin Pancharatnam-Berry metasurfaces for generating X-band orbital angular momentum beam[J]. Journal of Physics D, 54, 075104(2021).
Get Citation
Copy Citation Text
Yaowei Dai, Cong Chen, Peng Gao, Jiaming Zhao, Xiangyu Lu, Yinhui Wan, Xinyan Wang, Siyi Zhao, Hai Liu. 2 bit Optically Controlled Programmable Terahertz Metasurface Based on Spatially Encoded Structured Light[J]. Acta Optica Sinica, 2023, 43(11): 1124004
Category: Optics at Surfaces
Received: Dec. 5, 2022
Accepted: Feb. 9, 2023
Published Online: Jun. 13, 2023
The Author Email: Liu Hai (lhai_hust@hotmail.com)