Acta Optica Sinica, Volume. 43, Issue 11, 1124004(2023)

2 bit Optically Controlled Programmable Terahertz Metasurface Based on Spatially Encoded Structured Light

Yaowei Dai1,2, Cong Chen2, Peng Gao2, Jiaming Zhao2, Xiangyu Lu2, Yinhui Wan2, Xinyan Wang2, Siyi Zhao2, and Hai Liu1,2、*
Author Affiliations
  • 1Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • 2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • show less
    References(36)

    [1] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).

    [2] Tsilipakos O, Tasolamprou A C, Pitilakis A et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers[J]. Advanced Optical Materials, 8, 2000783(2020).

    [3] Wan X, Qi M Q, Chen T Y et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 6, 1-8(2016).

    [4] Wu S R, Lai K L, Wang C M. Passive temperature control based on a phase change metasurface[J]. Scientific Reports, 8, 1-6(2018).

    [5] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [6] Yang S, Wang J Y, Zhang T et al. Temperature-voltage bi-controllable broadband terahertz polarization conversion/absorption metasurface[J]. Acta Optica Sinica, 42, 0824001(2022).

    [7] Zhang S J, Chen X Y, Liu K et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 3, 1-14(2022).

    [8] Cheng Y Z, Gong R Z, Zhao J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves[J]. Optical Materials, 62, 28-33(2016).

    [9] Chanana A, Liu X J, Zhang C et al. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites[J]. Science Advances, 4, eaar7353(2018).

    [10] Gong C, Su W M, Zhang Y et al. An active metamaterials controlled by structured light illumination[J]. Optik, 171, 204-209(2018).

    [11] Zhang X G, Jiang W X, Jiang H L et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 3, 165-171(2020).

    [12] Bai Z X, Chen H, Zhu Z H et al. Diamond Raman oscillator achieves first structured beam output[J]. Chinese Journal of Lasers, 49, 2116002(2022).

    [13] Zeng X Y, Wu S Q, Chen B. Hybrid-coded phase-shifting profilometry for structured light measurement[J]. Laser & Optoelectronics Progress, 59, 1312002(2022).

    [14] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [15] Sun J, Timurdogan E, Yaacobi A et al. Large-scale silicon photonic circuits for optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 264-278(2014).

    [16] Hu J, Bandyopadhyay S, Liu Y H et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 8, 586087(2021).

    [17] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [18] Ding J, An S S, Zheng B W et al. Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths[J]. Advanced Optical Materials, 5, 1700079(2017).

    [19] Yan L B, Zhu W M, Wu P C et al. Adaptable metasurface for dynamic anomalous reflection[J]. Applied Physics Letters, 110, 201904(2017).

    [20] Xu H X, Hu G W, Li Y et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 8, 1-10(2019).

    [21] Zhang X Y, Gu J Q, Shi W Q. Terahertz metasurface with bound states in continuum based on metal split ring resonator[J]. Chinese Journal of Lasers, 50, 0214001(2023).

    [22] Qi Y P, Zhang B H, Ding J H et al. Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and applications of such metasurfaces[J]. Chinese Physics B, 30, 024211(2021).

    [23] Gao Y S, Fan Y B, Wang Y J et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 18, 8054-8061(2018).

    [24] Ji H Y, Zhang B, Wang G C et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure[J]. Optics Communications, 412, 37-40(2018).

    [25] Xu Z C, Gao R M, Ding C F et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 344, 125-128(2015).

    [26] Venkatesh S, Lu X Y, Saeidi H et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 3, 785-793(2020).

    [27] Zhang X Q, Tian Z, Yue W S et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 25, 4567-4572(2013).

    [28] Bao L, Wu R Y, Fu X J et al. Multi-beam forming and controls by metasurface with phase and amplitude modulations[J]. IEEE Transactions on Antennas and Propagation, 67, 6680-6685(2019).

    [29] Wan X, Xiao Q, Zhang Y Z et al. Reconfigurable sum and difference beams based on a binary programmable metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 20, 381-385(2021).

    [30] Zhang F H, Saifullah Y, Yang G M et al. 1-bit, 2-bit polarization insensitive reflection programable metasurface[C], 1899-1900(2019).

    [31] Zhang X H, Zhang H, Su J X et al. 2-Bit programmable digital metasurface for controlling electromagnetic wave[C](2018).

    [32] Kong X K, Wang Q, Jiang S L et al. A metasurface composed of 3-bit coding linear polarization conversion elements and its application to RCS reduction of patch antenna[J]. Scientific Reports, 10, 1-10(2020).

    [33] Zhang L, Cui T J. Angle-insensitive 2-bit programmable coding metasurface with wide incident angles[C], 932-934(2020).

    [34] Fu X J, Shi L, Yang J et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces[J]. ACS Applied Materials & Interfaces, 14, 22287-22294(2022).

    [35] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [36] Gao X, Tang L G, Wu X B et al. Broadband and high-efficiency ultrathin Pancharatnam-Berry metasurfaces for generating X-band orbital angular momentum beam[J]. Journal of Physics D, 54, 075104(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yaowei Dai, Cong Chen, Peng Gao, Jiaming Zhao, Xiangyu Lu, Yinhui Wan, Xinyan Wang, Siyi Zhao, Hai Liu. 2 bit Optically Controlled Programmable Terahertz Metasurface Based on Spatially Encoded Structured Light[J]. Acta Optica Sinica, 2023, 43(11): 1124004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Dec. 5, 2022

    Accepted: Feb. 9, 2023

    Published Online: Jun. 13, 2023

    The Author Email: Liu Hai (lhai_hust@hotmail.com)

    DOI:10.3788/AOS222094

    Topics