Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 931(2025)

Preparation and Performance Study of Porous Glucose/Sucrose-based Silicon Anode Materials

ZHANG Dianping, XU Dengming, WANG Zuo, CHEN Qi, FENG Chen, and LIN Wenfeng*
Author Affiliations
  • School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
  • show less
    References(22)

    [1] [1] GONZLEZ I, PILO J, TREJO A, et al. Sodium effects on the electronic and structural properties of porous silicon for energy storage[J]. Int J Energy Res, 2022, 46(7): 8760–8780.

    [2] [2] ZHAO W B, ZHAO C H, WU H, et al. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review[J]. J Energy Storage, 2024, 81: 110409.

    [3] [3] LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Adv Funct Mater, 2022, 32(23): 2200796.

    [4] [4] SCHMIDT H, JERLIU B, HGER E, et al. Volume expansion of amorphous silicon electrodes during potentiostatic lithiation of Li-ion batteries[J]. Electrochem Commun, 2020, 115: 106738.

    [5] [5] TAREQ F K, RUDRA S. Enhancing the performance of silicon-based anode materials for alkali metal (Li, Na, K) ion battery: A review on advanced strategies[J]. Mater Today Commun, 2024, 39: 108653.

    [6] [6] NAWAZ S, KHAN Y, ABDELMOHSEN S A M, et al. Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors[J]. RSC Adv, 2022, 12(27): 17228–17236.

    [7] [7] ESMIZADEH S, CABRAS L, SERPELLONI M, et al. A review on modeling of nucleation and growth of Li dendrites in solid electrolytes[J]. J Energy Storage, 2024, 97: 112897.

    [9] [9] ZHOU P, JIANG Z A, LI Y, et al. Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance[J]. Chin Chem Lett, 2024, 35(8): 109467.

    [10] [10] ZHAI J G, HUANG Y C, WEI Y J. Core-shell structured SiO2@C-Sn/SnO2 nanosphere as an anode material for high-performance lithium-ion batteries[J]. Ionics, 2024, 30(2): 689–695.

    [11] [11] ZHUANG Z L, ZHANG F M, ZHOU Y N, et al. Brittle star-like nanoweb modified carbon cloth synthesized by self-templated hollow zeolitic imidazolate framework-8 for stable Li metal anodes[J]. Mater Today Energy, 2022, 30: 101192.

    [12] [12] XIA M, LI Y R, ZHOU Z, et al. Improving the electrochemical properties of SiO@C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method[J]. Ceram Int, 2019, 45(2): 1950–1959.

    [13] [13] BAO W D, ZHAO L Q, ZHAO H J, et al. Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries[J]. Energy Storage Mater, 2021, 43: 258–265.

    [14] [14] ZUKALOV M, PITA LSKOV B, MOCEK K, et al. Electrochemical performance of Sol-gel-made Na2Ti3O7 anode material for Na-ion batteries[J]. J Solid State Electrochem, 2018, 22(8): 2545–2552.

    [15] [15] GUILLOT A, GIAUME D, SUVOROVA A, et al. Synthesis of lithium conducting titanium phosphates by the Sol-gel process[J]. J Sol Gel Sci Technol, 2024, 111(2): 336–346.

    [16] [16] WANG L B, MEI T, LIU W Q, et al. Low temperature chemical synthesis of silicon nanoparticles as anode materials for lithium-ion batteries[J]. Mater Chem Phys, 2018, 220: 308–312.

    [17] [17] YOON N, YOUNG C, KANG D, et al. High-conversion reduction synthesis of porous silicon for advanced lithium battery anodes[J]. Electrochim Acta, 2021, 391: 138967.

    [19] [19] MEI J, QIU Z, GAO T, et al. Insights into the conductive network of electrochemical exfoliation with graphite powder as starting raw material for graphene production[J]. Langmuir, 2023, 39(12): 4413–4426.

    [20] [20] BALA KRISHNA A, SOMESWARARAO M V, SUBBARAO P S V, et al. Fabrication and characterisation of electrospun barium titanate and polyvinly pyridine composite nanofibers[J]. Mater Today Proc, 2019, 18: 2142–2146.

    [21] [21] SARODE K K, CHOUDHURY R, MARTHA S K. Binder and conductive additive free silicon electrode architectures for advanced lithium-ion batteries[J]. J Energy Storage, 2018, 17: 417–422.

    [22] [22] LIN Z Y, SHAO G, LIU W, et al.In-situTEM observations of the structural stability in carbon nanotubes, nanodiamonds and carbon nano-Onions under electron irradiation[J]. Carbon, 2022, 192: 356–365.

    [24] [24] XUAN Z, PIING L, ZHHI H T, et al. FEC additive for improved SEI film and electrochemical performance of the lithium primary battery [J]. Energies, 2021, 14 (22): 7467–7467.

    [26] [26] SANGEETHA S, KRISHNAMURTHY G, FORO S, et al. Energy storage applications of cobalt and manganese metal–organic frameworks[J]. J Inorg Organomet Polym Mater, 2020, 30(11): 4792–4802.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Dianping, XU Dengming, WANG Zuo, CHEN Qi, FENG Chen, LIN Wenfeng. Preparation and Performance Study of Porous Glucose/Sucrose-based Silicon Anode Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 931

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 30, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: LIN Wenfeng (768622570@qq.com)

    DOI:10.14062/j.issn.0454-5648.20240688

    Topics