Optical Technique, Volume. 48, Issue 4, 464(2022)

Application of transfer learning in automatic classification of OCT retina images

CHEN Minghui, CHEN Sisi, MA Wenfei, LI Jiayu, SUN Hao, LV Linjie, and HE Longxi
Author Affiliations
  • [in Chinese]
  • show less
    References(15)

    [2] [2] Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing,2007,28(5):823-870.

    [3] [3] Murray R F. Classification images: A review[J]. Journal of Vision,2011,11(5):2-2.

    [4] [4] Wang P, Li J L, Ding H. Optical coherence tomography image for automatic classification of diabetic macular edema[J]. Optica Applicata,2020,50(4):567-577.

    [6] [6] Wimmer G, Vécsei A, Uhl A. CNN transfer learning for the automated diagnosis of celiac disease[C]∥2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA). Finland,Oulu:IEEE,2016:1-6.

    [7] [7] Rocheteau E, Kim D. Deep transfer learning for automated diagnosis of skin lesions from photographs[J]. arXiv preprint arXiv:2011.04475,2020.

    [8] [8] An G, Akiba M, Omodaka K, et al. Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images[J]. Scientific Reports,2021,11(1):1-9.

    [9] [9] Karri S P K, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration[J]. Biomedical Optics Express,2017,8(2):579-592.

    [10] [10] Kermany D S, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell,2018,172(5):1122-1131.

    [11] [11] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556,2014.

    [12] [12] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]∥Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nv,USA:CVPR,2016:2818-2826.

    [13] [13] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA:CVPR,2018:4510-4520.

    [14] [14] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]∥Proceedings of The European Conference on Computer Vision. Munich,Germany:ECCV,2018:116-131.

    [19] [19] Li Y, Wang X, Shi B, et al. Hand gesture recognition using IR-UWB radar with ShuffleNet V2[C]∥Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. Sanya,China:CCEAI,2021:126-131.

    [20] [20] Chen C, Zhu T, Li S, et al. Apple leaf disease regcognition method base on improved ShuffleNet V2[C]∥2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC).Shanghai,China:IEEE,2021:276-282.

    [23] [23] Hussain M A, Bhuiyan A, D Luu C, et al. Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm[J]. PloS one,2018,13(6): e0198281.

    CLP Journals

    [1] YANG Wenyi, CHEN Minghui, WU Yuquan, QIN Kaibo, YANG Zhengqi. AMD subtype classification technique using Self-attention mechanism[J]. Optical Technique, 2024, 50(1): 112

    Tools

    Get Citation

    Copy Citation Text

    CHEN Minghui, CHEN Sisi, MA Wenfei, LI Jiayu, SUN Hao, LV Linjie, HE Longxi. Application of transfer learning in automatic classification of OCT retina images[J]. Optical Technique, 2022, 48(4): 464

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 2, 2021

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics