Chinese Optics Letters, Volume. 14, Issue 7, 070301(2016)
Motion de-blurring by second-order intensity-correlated imaging
Fig. 1. Experimental schematic of motion de-blurring by second-order intensity-correlated imaging with pseudo-thermal light. A variable iris, which can continuously change the diameter of the laser beam from 1 to 12 mm, is placed in front of the ground glass disk. The object is driven by a stepper motor and moves one dimension perpendicular to the optical axis.
Fig. 2. Experimental results in different motion amplitudes and motion modes obey uniform statistical distribution (averaged 8000 measurements). (a)–(e) are the diffraction patterns achieved by second-order intensity-correlated imaging when the maximum motion amplitudes deviating from the optical axis are 0, 500, 1000, 2000, and 4000 μm, respectively. (f)–(j) are the corresponding results of conventional Fourier imaging, which is performed by removing the rotating ground glass disk shown in Fig.
Fig. 3. Experimental results in different motion modes and the maximum motion amplitude deviating from the optical axis is 2000 μm (averaged 8000 measurements). (a)–(c) are the probability distributions of the motion modes. (d)–(f) display the diffraction patterns achieved by second-order intensity-correlated imaging and the reconstructed images in spatial domain are shown in the upper right corner.
Fig. 4. Explanation of motion de-blurring imaging for an HBT system. (a) The explanation for the schematic shown in Fig.
Get Citation
Copy Citation Text
Zunwang Bo, Wenlin Gong, Shensheng Han, "Motion de-blurring by second-order intensity-correlated imaging," Chin. Opt. Lett. 14, 070301 (2016)
Category: COHERENCE OPTICS AND STATISTICAL OPTICS
Received: Mar. 2, 2016
Accepted: May. 16, 2016
Published Online: Aug. 3, 2018
The Author Email: Wenlin Gong (gongwl@siom.ac.cn)