Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2212007(2023)

Improved Lidar Odometry Based on Continuous-Time Spline Constraints

Qipeng Rao, Ming Ling*, Xin Wang, Shulong Zhai, and Chang Liu
Author Affiliations
  • School of Electronics and Electrical Engineering, Shanghai University of Engineering and Technology, Shanghai 201620, China
  • show less
    References(28)

    [1] Ma Z Y, Shao C S, Yang G Y et al. Research progress of SLAM technology[J]. Electronics Optics & Control, 30, 78-85(2023).

    [3] Agostinho L R, Ricardo N M, Pereira M I et al. A practical survey on visual odometry for autonomous driving in challenging scenarios and conditions[J]. IEEE Access, 10, 72182-72205(2022).

    [5] Qin Z, Gao X C, Chen Z K et al. Improved Lidar odometer based on motion prediction[J]. Laser & Optoelectronics Progress, 60, 1928004(2023).

    [6] Deschaud J E. IMLS-SLAM: scan-to-model matching based on 3D data[C], 2480-2485(2018).

    [7] Dellenbach P, Deschaud J E, Jacquet B et al. CT-ICP: real-time elastic LiDAR odometry with loop closure[C], 5580-5586(2022).

    [8] Wang H, Wang C, Chen C L et al. F-LOAM: fast LiDAR odometry and mapping[C], 4390-4396(2021).

    [9] Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time[C](2014).

    [10] Shan T X, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C], 4758-4765(2019).

    [11] Zeki I M, Hashim M A, Hammood M M et al. A review on localization algorithms of mobile robot in different environments[J]. Journal of Algebraic Statistics, 13, 3555-3580(2022).

    [12] Lü J J, Hu K W, Xu J H et al. CLINS: continuous-time trajectory estimation for LiDAR-inertial system[C], 6657-6663(2021).

    [13] Cong Y Z, Chen C, Yang B S et al. 3D-CSTM: a 3D continuous spatio-temporal mapping method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 186, 232-245(2022).

    [14] Droeschel D, Behnke S. Efficient continuous-time SLAM for 3D lidar-based online mapping[C], 5000-5007(2018).

    [15] Persson M, Häger G, Ovrén H et al. Practical pose trajectory splines with explicit regularization[C], 156-165(2022).

    [16] Song J L. State estimation and motion planning of lie group dynamic system based on Gaussian process[D], 19-23(2019).

    [17] Yan X Y, Indelman V, Boots B. Incremental sparse GP regression for continuous-time trajectory estimation and mapping[J]. Robotics and Autonomous Systems, 87, 120-132(2017).

    [18] Zhang H M, Xia X, Nitsch M et al. Continuous-time factor graph optimization for trajectory smoothness of GNSS/INS navigation in temporarily GNSS-denied environments[J]. IEEE Robotics and Automation Letters, 7, 9115-9122(2022).

    [19] Mukadam M, Dong J, Dellaert F et al. STEAP: simultaneous trajectory estimation and planning[J]. Autonomous Robots, 43, 415-434(2019).

    [20] Wong J N, Yoon D J, Schoellig A P et al. A data-driven motion prior for continuous-time trajectory estimation on SE(3)[J]. IEEE Robotics and Automation Letters, 5, 1429-1436(2020).

    [21] Zeng X W, He G J, Zhuang Y. B-spline-based trajectory estimation for handheld LiDAR-SLAM device[C](2021).

    [24] Wu Y C, Yoon D J, Burnett K et al. Picking up speed: continuous-time lidar-only odometry using Doppler velocity measurements[J]. IEEE Robotics and Automation Letters, 8, 264-271(2023).

    [25] Low K L. Linear least-squares optimization for point-toplane ICP surface registration[D], 1-3(2004).

    [26] MacTavish K, Barfoot T D. At all costs: a comparison of robust cost functions for camera correspondence outliers[C], 62-69(2015).

    [27] Tirado J, Civera J. Jacobian computation for cumulative B-splines on SE(3) and application to continuous-time object tracking[J]. IEEE Robotics and Automation Letters, 7, 7132-7139(2022).

    [28] Sommer C, Usenko V, Schubert D et al. Efficient derivative computation for cumulative B-splines on lie groups[C], 11145-11153(2020).

    [29] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C], 3354-3361(2012).

    Tools

    Get Citation

    Copy Citation Text

    Qipeng Rao, Ming Ling, Xin Wang, Shulong Zhai, Chang Liu. Improved Lidar Odometry Based on Continuous-Time Spline Constraints[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2212007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jan. 31, 2023

    Accepted: Apr. 3, 2023

    Published Online: Nov. 16, 2023

    The Author Email: Ming Ling (Lingming200093@hotmail.com)

    DOI:10.3788/LOP230556

    Topics