Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837005(2024)

Self-Supervised Pre-Training for Intravascular Ultrasound Image Segmentation Method Based on Diffusion Model

Wenyue Hao1, Huaiyu Cai1、*, Tingtao Zuo2, Zhongwei Jia3, Yi Wang1, and Xiaodong Chen1
Author Affiliations
  • 1Key Laboratory of Optoelectronics Information Technology, Ministry of Education, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Lepu Medical Technology (Beijing) Co., Ltd., Beijing 102200, China
  • 3Southwestern Lu Hospital, Liaocheng 252325, Shandong, China
  • show less
    Figures & Tables(9)
    Schematic diagram of example of encoder-decoder structure[26]
    Denoising self-supervised pre-training paradigm based on diffusion
    Comparison of different initialization methods of 20% data set
    Comparison of visualization results of segmentation results (yellow line on the outside represents the segment of the media and green line on the inside represents the segment of the lumen)
    • Table 0. [in Chinese]

      View table

      Table 0. [in Chinese]

      算法1基于扩散的去噪自监督代理任务伪代码

      输入:

         xt:输入图像

      输出:

         ϵθ(xt):输出图像

      算法流程:

      1:repeat

      2: x0~q(x0)

      3: t~Uniform({1,,T})

      4: ϵ~N(0,1)

      5: take gradient desent step onθ||ϵθ(αt¯x0+1-αt¯ϵ)-ϵ||2

      6:until converged

    • Table 1. Comparison of results of different initialization methods

      View table

      Table 1. Comparison of results of different initialization methods

      MethodDDice(↑)JJM(↑)HHD(↓)PPAD(↓)
      LumenMediaLumenMediaLumenMediaLumenMedia
      Scratch(20%)0.9020.8750.8310.7920.3850.4500.1950.301
      Pred_x(20%)0.9210.9330.8570.8780.1820.2520.1070.104
      Pred_noise(20%)0.9320.9420.8750.8930.1690.3430.0880.082
      Scratch(100%)0.9320.9490.8770.9060.2260.2680.0920.078
    • Table 2. Comparison of experimental results using different methods

      View table

      Table 2. Comparison of experimental results using different methods

      ModelDDice(↑)JJM(↑)HHD(↓)PPAD(↓)
      LumenMediaLumenMediaLumenMediaLumenMedia
      Unet(100%)0.9290.9440.8710.8960.2500.3910.0880.090
      Deeplabv3+(100%)0.9290.9490.8710.9050.1990.1860.0980.080
      TransUnet(100%)0.9320.9360.8750.8840.2030.3240.0880.104
      Swin-Unet(100%)0.9210.8870.8580.8050.9972.2590.1230.211
      Pred_noise(20%)0.9320.9420.8750.8930.1690.3430.0880.082
    • Table 3. Comparison of results of different noise level numbers

      View table

      Table 3. Comparison of results of different noise level numbers

      TDDice(↑)JJM(↑)HHD(↓)PPAD(↓)
      LumenMediaLumenMediaLumenMediaLumenMedia
      10.9190.9210.8550.8600.3180.4820.1210.139
      1000.9270.9390.8660.8880.1240.1810.0930.074
      2000.9320.9420.8750.8930.1690.3430.0880.082
      5000.9260.9410.8650.8910.1690.3270.0880.084
      10000.9200.9360.8560.8830.3670.4510.1170.094
    • Table 4. Comparison of results of different loss functions

      View table

      Table 4. Comparison of results of different loss functions

      Loss functionDDice(↑)JJM(↑)HHD(↓)PPAD(↓)
      LumenMediaLumenMediaLumenMediaLumenMedia
      LMSE0.9270.9370.8660.8840.1970.3060.0880.087
      LMSE+0.1LSSIM0.9320.9420.8750.8930.1690.3430.0880.082
    Tools

    Get Citation

    Copy Citation Text

    Wenyue Hao, Huaiyu Cai, Tingtao Zuo, Zhongwei Jia, Yi Wang, Xiaodong Chen. Self-Supervised Pre-Training for Intravascular Ultrasound Image Segmentation Method Based on Diffusion Model[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Dec. 28, 2023

    Accepted: Feb. 5, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Huaiyu Cai (hycai@tju.edu.cn)

    DOI:10.3788/LOP232774

    CSTR:32186.14.LOP232774

    Topics