Advanced Photonics, Volume. 3, Issue 1, 016003(2021)
Lasing action in microdroplets modulated by interfacial molecular forces On the Cover
Fig. 1. Concept and principle of droplet lasers hosting AL modes based on different hydrophobic forces at droplet–solid interfaces. (a) Schematic of a droplet laser hosting AL modes. A dye-doped droplet is formed on a highly reflective dielectric mirror. AL modes will oscillate from strong reflections between the mirror and the droplet–air interface. (b) Enlarged schematic of the droplet–solid interface in (a). A molecular layer is deposited between the mirror and the droplet. The droplet–solid interfacial tension
Fig. 2. Demonstration of lasing action. (a) Schematic of a round droplet on a glass slide. (b) The optical spectrum of the droplet on a glass slide showing no laser emission. Inset: top-view profile of a round droplet on a glass slide (top) and the optical image after pumping (below). (c) Schematic of a round droplet on a highly reflective mirror. (d) The optical spectrum of the round droplet on the mirror showing laser emission. Inset: top-view profile of a round droplet on a mirror (top) and the optical image after pumping (below). (e) Schematic of a “deformed” droplet on a highly reflective mirror. (f) The optical spectrum of the “deformed” droplet showing laser emission. Insets: top-view profile of the “deformed” droplet (top) and the optical image after pumping (below). Scale bars in insets:
Fig. 3. Characterization of the AL modes through FSRs. (a) Side-view profile of a droplet.
Fig. 4. Lasing action of droplet lasers under different hydrophobicity. (a) Top: side-view profiles of droplets with varying contact angles. Below: optical images of the droplets after pumping. Yellow boxes, the laser emission regions. Red dashed circle in the CCD images represents excitation pump regions. Scale bar:
Fig. 5. Modulating laser emission with intermolecular forces at the biointerface. (a) Schematic of biointerface modulating laser emissions based on biomolecular adsorptions with different concentrations. Higher concentration of biomolecules leads to smaller interfacial tension
Get Citation
Copy Citation Text
Zhen Qiao, Xuerui Gong, Peng Guan, Zhiyi Yuan, Shilun Feng, Yiyu Zhang, Munho Kim, Guo-En Chang, Yu-Cheng Chen, "Lasing action in microdroplets modulated by interfacial molecular forces," Adv. Photon. 3, 016003 (2021)
Category: Research Articles
Received: Oct. 26, 2020
Accepted: Dec. 23, 2020
Posted: Dec. 24, 2020
Published Online: Feb. 5, 2021
The Author Email: Chen Yu-Cheng (yucchen@ntu.edu.sg)