Journal of Advanced Dielectrics, Volume. 12, Issue 3, 2250003(2022)
Agreement in experimental and theoretically obtained electrocaloric effect in optimized Bi
[1] A. S. Bhalla, R. Guo, R. Roy. The perovskite structure — A review of its role in ceramic science and technology. Mater. Res. Innov., 4, 3(2000).
[3] C. B. Fleddermann, J. A. Nation. Ferroelectric sources and their application to pulsed power: A review. IEEE Trans. Plasma Sci., 25, 212(1997).
[4] S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo. Progress in materials science ferroelectric crystals for electroacoustic transducers — A review. Prog. Mater. Sci., 68, 1(2015).
[5] A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, S. Mohammadi. Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 693(2009).
[6] F. Y. Lee, S. Goljahi, I. M. Mckinley, C. S. Lynch, L. Pilon. Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle. Smart Mater. Struct., 21, 12(2012).
[7] B. A. Tuttle, D. A. Payne. The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics. Ferroelectrics, 37, 603(1981).
[8] W. N. Lawless. Specific heat and electrocaloric properties of KTaO3 at low temperatures. Phys. Rev. B, 16, 433(1977).
[9] P. D. Thacher. Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr, Ti)O3 compounds. J. Appl. Phys., 39, 1996(1968).
[10] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 311, 1270(2006).
[11] D. Saranya, A. R. Chaudhuri, J. Parui, S. B. Krupanidhi. Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bull. Mater. Sci., 32, 259(2009).
[12] B. Neese, S. G. Lu, B. Chu, Q. M. Zhang. Electrocaloric effect of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl. Phys. Lett., 94, 042910(2009).
[13] S. G. Lu et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett., 97, 162904(2010).
[14] T. M. Correia et al. Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film. Appl. Phys. Lett., 95, 20(2009).
[15] R. Pirc, Z. Kutnjak, R. Blinc, Q. M. Zhang. Electrocaloric effect in relaxor ferroelectrics. J. Appl. Phys., 110, 074113(2011).
[16] [16] Z. Kutnjak, B. Rožič and R. Pirc, Electrocaloric effect: Theory, measurements, and applications, Wiley encyclopedia of electrical and electronics engineering, (2015), pp. 1–19, doi:10.1002/047134608X.W8244.
[17] C. O. Paiva-Santos et al. Effect of niobia on the crystal structure and dielectric characteristics of Pb(Zr0.45Ti0.55)O3 prepared from polymeric precursor. Mater. Res. Bull., 35, 15(2000).
[18] M. S. J. Nunes et al. Microstructural and ferroelectric properties of PbZr1−xTixO3 thin films prepared by the polymeric precursor method. Mater. Lett., 49, 365(2001).
[19] C. R. Cho, L. F. Francis, D. L. Polla. Ferroelectric properties of sol–gel deposited Pb(Zr,Ti)O3/LaNiO3 thin films on single crystal and platinized-Si substrates. Mater. Lett., 38, 125(1999).
[20] Y. Bai, G. P. Zheng, S. Q. Shi. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull., 46, 1866(2011).
[21] Q. Zhang, R. W. Whatmore. Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films. J. Appl. Phys., 94, 5228(2003).
[22] R. Lal, S. C. Sharma, R. Dayal. Piezoelectric characteristics of spraydried PZT ceramics modified by isovalent, supervalent and subvalent substitutions. Ferroelectrics, 100, 43(1989).
[23] R. Selvamani, G. Singh, V. S. Tiwari. Electro-caloric effect in PLZT (8/65/35) ceramic. AIP Conf. Proc., 1447, 1281(2012).
[24] W. Y. Pan, C. Q. Dam, Q. M. Zhang, L. E. Cross. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02) (Ti,Zr,Sn)O3 family of ceramics. J. Appl. Phys., 66, 6014(1989).
[25] R. Rai, S. Sharma. Structural and dielectric properties of (La, Bi) modified PZT ceramics. Solid State Commun., 129, 305(2004).
[26] T. A. Babu, K. V. Ramesh, V. R. Reddy, D. L. Sastry. Structural and dielectric studies of excessive Bi3+ containing perovskite PZT and pyrochlore biphasic ceramics. Mater. Sci. Eng. B, 228, 175(2018).
[27] A. Greco, C. Masselli. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry, 6, 67(2020).
[28] R. B. Olsen et al. Pyroelectric conversion cycle of vinylidene fluoridetrifluoroethylene copolymer. J. Appl. Phys., 57, 5036(1985).
[29] A. Navid, L. Pilon. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater. Struct., 20, 025012(2011).
[30] S. Patel, D. Sharma, A. Singh, R. Vaish. Enhanced thermal energy conversion and dynamic hysteresis behavior of Sr-added Ba0.85Ca0.15Ti0.9Zr0.1O3 ferroelectric ceramics. J. Mater., 2, 75(2016).
[31] B. Noheda et al. A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett., 74, 2059(1999).
[32] R. E. Cohen. Origin of ferroelectricity in perovskite oxides. Nature, 358, 136(1992).
[33] V. R. Mudinepalli, L. Feng, W. Lin, B. S. Murty. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J. Adv. Ceram., 4, 46(2015).
[34] D. Damjanovic. A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett., 97, 24(2010).
[35] A. Garg, D. C. Agrawal. Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., 86, 134(2001).
[36] Y. M. Kang, S. Baik. In situ high-temperature X-ray diffraction study on domain evolution in ferroelectric (Pb,La)TiO3 epitaxial thin films. J. Appl. Phys., 82, 2532(1997).
[37] B. Peng, Z. Xie, Z. Yue, L. Li. Temperature-dependent polarization back-switching and dielectric nonlinearity in PbZr0.4Ti0.6O3 ferroelectric thin films. J. Appl. Phys., 116, 034109(2014).
[38] M. Valant. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci., 57, 980(2012).
[39] A. Peláiz-Barranco, J. Wang, T. Yang. Direct and indirect analysis of the electrocaloric effect for lanthanum-modified lead zirconate titanate antiferroelectric ceramics. Ceram. Int., 42, 229(2016).
[40] I. J. Roh et al. Thickness-dependent electrocaloric effect in Pb0.9La0.1Zr0.65Ti0.35O3 films grown by sol–gel process. J. Electron. Mater., 45, 1057(2016).
[41] X. Q. Liu, T. T. Chen, M. S. Fu, Y. J. Wu, X. M. Chen. Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: Effects of domain sizes and phase constitution. Ceram. Int., 40, 11269(2014).
[42] R. Chukka et al. Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries. Appl. Phys. Lett., 98, 2011(2011).
[43] L. Luo et al. Pyroelectric and electrocaloric effect of 〈1 1 1〉- oriented 0.9PMN–0.1PT single crystal. J. Alloys Compd., 509, 8149(2011).
[44] Y. Bai, X. Han, K. Ding, L. J. Qiao. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1−xSrxTiO3 ceramics. Appl. Phys. Lett., 103, 16(2013).
[45] G. Singh et al. Electro-caloric effect in 0.45BaZr0.2Ti0.8O3−0.55Ba0.7Ca0.3TiO3 single crystal. Appl. Phys. Lett., 102, 082902(2013).
[46] X. Zhang et al. Large electrocaloric effect in Ba(Ti1−xSnx)O3 ceramics over a broad temperature region. AIP Adv., 5, 047134(2015).
[47] M. Zannen et al. Electrocaloric effect and energy storage in lead free Gd0.02Na0.48Bi0.5TiO3 ceramic. Solid State Sci., 66, 31(2017).
[48] H. Maiwa. Electrocaloric and electromechanical properties of (Pb,La)(Zr,Ti)O3 ceramics. Ferroelectrics, 556, 51(2020).
[49] Z. H. Niu et al. Giant negative electrocaloric effect in B-site nonstoichiometric (Pb0.97La0.02)(Zr0.95Ti0.05)1+yO3 anti-ferroelectric ceramics. Mater. Res. Lett., 6, 384(2018).
[51] P. Z. Ge et al. Composition dependence of giant electrocaloric effect in PbxSr1−xTiO3 ceramics for energy-related applications. J. Materiomics, 5, 118(2019).
[52] P. Z. Ge et al. Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J. Mater. Sci. Mater. Electron., 29, 1075(2018).
[53] L. Li et al. Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int., 44, 343(2018).
[54] S. Merselmiz et al. High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic. Ceram. Int., 46, 23867(2020).
[56] R. Kandilian, A. Navid, L. Pilon. The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary. Smart Mater. Struct., 20, 055020(2011).
[58] R. Sao, G. Vats, R. Vaish. A prime lead-free ferroelectric ceramic for thermal energy harvesting: 0.88Bi0.5Na0.5TiO3-.02SrTiO3−0.1Bi0.5Li0.5TiO3. Ferroelectrics, 474, 1(2015).
[59] M. Shen et al. High room-temperature pyroelectric property in lead-free BNT-BZT ferroelectric ceramics for thermal energy harvesting. J. Eur. Ceram. Soc., 39, 1810(2019).
Get Citation
Copy Citation Text
Shubhpreet Kaur, Mehak Arora, Sunil Kumar, Parambir Singh Malhi, Mandeep Singh, Anupinder Singh. Agreement in experimental and theoretically obtained electrocaloric effect in optimized Bi
Category: Research Articles
Received: Jan. 2, 2022
Accepted: Feb. 20, 2022
Published Online: Nov. 1, 2022
The Author Email: Anupinder Singh (anupinder.phy@gndu.ac.in)