Journal of Advanced Dielectrics, Volume. 15, Issue 2, 2450023(2025)
Synthesis of BiFeO3/ZnO heterojunction with enhanced piezocatalytic performance for highly-effective degradation of organic pollutant
[1] J. Z. Jiang, J. Zou, M. N. Anjum, J. C. Yan, L. Huang, Y. X. Zhang, J. F. Chen. Synthesis and characterization of wafer-like BiFeO3 with efficient catalytic activity. Solid State Sci., 13, 1779(2011).
[2] V. Subhiksha, S. Kokilavani, S. S. Khan. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. Chemosphere, 290, 133228(2021).
[3] M. K. Verma, A. Kumar, T. Das, V. Kumar, S. Singh, V. S. Rai, D. Prajapati, R. K. Sonwani, K. Sahoo, K. D. Mandal. BiFeO3 perovskite as an efficient photocatalyst synthesised by soft chemical route. Mater. Technol., 36, 594(2020).
[4] X. Wang, Y. Lin, X. F. Ding, J. G. Jiang. Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J. Alloys Compd., 509, 6585(2011).
[5] L. V. Bora, R. K. Mewada. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew. Sustain. Energy Rev., 76, 1393(2022).
[6] Y. Liu, D. Zhang. The preparation of reduced graphene oxide-TiO2 composite materials towards transparent, strain sensing and photodegradation multifunctional films. Compos. Sci. Technol., 137, 102(2016).
[7] C. A. Martínez-Huitle, E. Brillas. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B: Environ. Energy, 87, 105(2009).
[8] F. Gao, X. Y. Chen, K. B. Yin, S. Dong, Z. F. Ren, F. Yuan, T. Yu, Z. G. Zou, J. M. Liu. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater., 19, 2889(2007).
[9] S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K. Domen, H. Hosono, H. Kawazoe, A. Takana. mechano-catalytic overall water splitting. Chem. Commun., 20, 2185(1998).
[10] Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242(2006).
[11] K. S. Hong, H. F. Xu, H. Konishi, X. C. Li. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett., 1, 997(2010).
[12] H. Lin, Z. Wu, Y. M. Jia, W. J. Li, H. L, R. K. Zheng, H. S. Luo. Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers. Appl. Phys. Lett., 104, 162907(2014).
[13] J. J. Long, T. T. Ren, J. Han, N. J. Li, D. Y. Chen, Q. F. Xu, H. Li, J. M. Lu. Heterostructured BiFeO3@CdS nanofibers with enhanced piezoelectric response for efficient piezocatalytic degradation of organic pollutants. Sep. Purif. Technol., 290, 120861(2022).
[14] Y. L. Liu, J. M. Wu. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy, 56, 74(2019).
[15] G. L. Yuan, S. W. Or. Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−xNdxFeO3 (x=0–0.15) ceramics. Appl. Phys. Lett., 88, 062905(2006).
[16] J. Wu, W. J. Mao, Z. Wu, X. L. Xu, H. L. You, A. Xue, Y. M. Jia. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale, 8, 7343(2016).
[17] G. X. Bai, M. K. Tsang, J. H. Hao. Tuning the luminescence of phosphors: Beyond conventional chemical method. Adv. Opt. Mater., 3, 431(2015).
[18] Y. M. Jia, H. S. Luo, X. Y. Zhao, F. F. Wang. Giant magnetoelectric response from a piezoelectric/magnetostrictive laminated composite combined with a piezoelectric transformer. Adv. Mater., 20, 4776(2008).
[19] S. K. Singh, H. Ishiwara, K. Maruyama. Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett., 88, 261101(2006).
[20] M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, J. H. Hao. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater., 27, 4488(2015).
[21] Z. W. Wu, Q. Sun, K. Ding, C. X. Gu. Simulation and dose uniformity analysis of plasma based ion implantation. J. Phys. D: Appl. Phys., 38, 4296(2005).
[22] S. J. Yuan, Z. B. Yang, C. Xie, F. Yan, J. Y. Dai, S. P. Lau, H. L. Chan, J. H. Hao. Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures. Adv. Mater., 28, 10048(2016).
[23] M. Shahjahan, M. K. R. Khan, M. F. Hossain, S. Biswas, T. Takahashi. Structural, optical, and photocatalytic properties of ZnO:Al nanowall structure deposited on glass substrate by spray pyrolysis. J. Vac. Sci. Technol. A, 27, 885(2009).
[24] X. L. Xu, Y. M. Jia, L. B. Xiao, Z. Wu. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere, 193, 1143(2018).
[25] M. Y. Choi, D. H. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, S. W. Kim. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater., 21, 2185(2009).
[26] H. L. You, Y. M. Jia, Z. Wu, X. X. Xu, W. Q. Qian, Y. T. Xia, M. Ismail. Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem. Commun., 79, 55(2017).
[27] W. Q. Qian, Z. Wu, Y. M. Jia, Y. T. Hong, X. L. Xu, H. L. You, Y. Q. Zheng, Y. T. Xia. Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods. Electrochem. Commun., 81, 124(2017).
[28] T. Xian, H. Yang, J. F. Dai, Z. Q. Wei, J. Y. Ma, W. J. Feng. Photocatalytic properties of BiFeO3 nanoparticles with different sizes. Mater. Lett., 65, 1573(2011).
[29] Q. C. Zhang, Y. M. Jia, J. Chen, X. X. Wang, L. H. Zhang, Z. Chen, Z. Wu. Strongly enhanced piezocatalysis of BiFeO3/ZnO heterostructure nanomaterials. New J. Chem., 47, 3471(2022).
[30] J. D. Zhuang, W. X. Dai, Q. F. Tian, Z. H. Li, L. Y. Xie, J. X. Wang, P. Liu, X. C. Shi, D. H. Wang. Photocatalytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location. Langmuir, 26, 9686(2010).
[31] X. L. Xu, S. J. Chen, Z. Wu, Y. M. Jia, L. B. Xiao, Y. S. Liu. Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy, 50, 581(2018).
[32] Y. Q. Zheng, Y. M. Jia, H. M. Li, Z. Wu, X. P. Dong. Enhanced piezo-electro-chemical coupling effect of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis. J. Mater. Sci., 55, 14787(2020).
[33] A. Mohanty, S. Parida, R. Behera, T. Roy. Vibration energy harvesting: A review. J. Adv. Dielectr., 9, 1930001(2019).
[34] H. L. You, X. X. Ma, Z. Wu, L. F. Fei, X. Q. Chen, J. Yang, Y. S. Liu, Y. M. Jia, H. M. Li, F. F. Wang, H. T. Huang. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/py-bi-catalytic dye decomposition of NaNbO3 nanofibers. Nano Energy, 52, 351(2018).
[35] G. Wang, Q. Z. Zhang, Q. H. Chen, X. H. Ma, Y. J. Xin, X. W. Zhu, D. Ma, C. Y. Cui, J. Zhang, Z. Xiao. Photocatalytic degradation performance and mechanism of dibutyl phthalate by graphene/TiO2 nanotube array photoelectrodes. Chem. Eng. J., 358, 1083(2019).
[36] Z. Y. Zhong, S. K. Singh, K. Maruyama, H. Ishiwara. Comparative studies on ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Ir and Pt electrodes. Jpn. J. Appl. Phys., 47, 2230(2008).
[37] X. Z. Deng, C. Song, Y. L. Tong, G. L. Yuan, F. Gao, D. Q. Liu, S. T. Zhang. Enhanced photocatalytic efficiency of C3N4/BiFeO3 heterojunctions: The synergistic effects of band alignment and ferroelectricity. Phys. Chem. Chem. Phys., 20, 3648(2018).
[38] D. F. Yu, Z. H. Liu, J. M. Zhang, S. Li, Z. C. Zhao, L. F. Zhu, W. S. Liu, Y. H. Lin, H. Liu, Z. T. Zhang. Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects. Nano Energy, 58, 695(2019).
[39] J. P. Ma, L. Chen, Z. Wu, J. Chen, Y. M. Jia, Y. M. Hu. Pyroelectric Pb(Zr0.52Ti0.48)O3 polarized ceramic with strong pyro-driven-catalysis for dye wastewater decomposition. Ceram. Int., 45, 11934(2019).
[40] Z. Wu, X. Y. Shi, T. T. Liu, X. L. Xu, H. J. Yu, Y. Zhang, L. S. Qin, X. P. Dong, Y. M. Jia. Remarkable pyro-catalysis of g-C3N4 nanosheets for dye decoloration under room-temperature cold-hot cycle excitation. Nanomateials, 13, 1124(2023).
[41] D. Guo, Z. Wu, X. X. Shu, W. W. Wu, G. Q. Zhu, B. L. Peng, Y. M. Jia. Strongly piezocatalytic dye decomposition of sol-gel synthesized PZT film. Ceram. Int., 50, 2514(2024).
[42] H. L. You, Z. Wu, L. H. Zhang, Y. R. Ying, Y. Liu, L. F. Fei, X. X. Chen, Y. M. Jia, Y. J. Wang, F. F. Wang, S. Ju, J. L. Qiao, C. H. Lam, H. T. Huang. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem., 58, 11779(2019).
[43] Y. T. Hong, J. P. Ma, Z. Wu, J. S. Ying, H. L. You, Y. M. Jia. Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials. Acta Phys. Sin., 67, 107702(2018).
[44] E. B. Simsek. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal. B: Environ. Energy., 200, 309(2017).
[45] J. Fu, B. B. Chang, Y. L. Tian, F. N. Xi, X. P. Dong. Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: In situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A., 1, 3083(2013).
[46] Y. L. Tian, B. B. Chang, J. L. Lu, J. Fu, F. N. Xi, X. P. Dong. Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS App. Mater. Interfaces, 5, 7079(2013).
[47] N. Kirkwood, B. Singh, P. Mulvaney. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer. Adv. Mater. Interfaces, 3, 1600868(2016).
[48] Y. L. Xia, W. Q. Qian, Y. Yang. Advancements and prospects of flexoelectricity. ACS Appl. Mater. Interfaces, 16, 9597(2024).
[49] T. Wu, K. Liu, S. H. Liu, X. L. Feng, X. F. Wang, L. F. Wang, Y. Qin, Z. L. Wang. Highly efficient flexocatalysis of two-dimensional semiconductors. Adv. Mater., 35, 2208121(2022).
[50] T. Fan, C. C. Chen, Z. H. Tang, Y. R. Ni, C. H. Lu. Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process., 40, 439(2015).
[51] M. Z. Chen, Y. M. Jia, H. M. Li, Z. Wu, T. Y. Huang, H. F. Zhang. Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation. J. Adv. Ceram., 10, 338(2021).
Get Citation
Copy Citation Text
Yao Feng, Jinhua Li, Hao Yan. Synthesis of BiFeO3/ZnO heterojunction with enhanced piezocatalytic performance for highly-effective degradation of organic pollutant[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450023
Category: Research Articles
Received: Jun. 9, 2024
Accepted: Sep. 24, 2024
Published Online: Feb. 18, 2025
The Author Email: Li Jinhua (lijhua2024@163.com)