Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0112002(2024)

Optical Frequency Domain Distributed Polarization Measurement Technology and Applications (Invited)

Zhangjun Yu1,3,4、†, Jun Yang1,3,4、†,*, Chen Zou2, Cuofu Lin2, Yuncai Wang1,3,4, and Yuwen Qin1,3,4
Author Affiliations
  • 1Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • 2College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • 3Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangzhou 510006, Guangdong, China
  • 4Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangzhou 510006, Guangdong, China
  • show less
    References(79)

    [1] Yu Z J, Yang J, Lin C F et al. Distributed polarization measurement for fiber sensing coils: a review[J]. Journal of Lightwave Technology, 39, 3699-3710(2021).

    [2] Penninckx D, Definition Beck N.. meaning, and measurement of the polarization extinction ratio of fiber-based devices[J]. Applied Optics, 44, 7773-7779(2005).

    [3] Liao R L, Wang C D, Tang M et al. Measurement of polarization mode coupling distribution in polarization maintaining fibers using microwave photonic filter technique[C](2017).

    [4] Zhang H L, Yang J, Li C et al. Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips[J]. Applied Optics, 56, 6873-6880(2017).

    [5] Takada K, Mitachi S. Polarization crosstalk dependence on length in silica-based waveguides measured by using optical low coherence interference[J]. Journal of Lightwave Technology, 16, 1413-1422(1998).

    [6] Wang C D, Tang M, Fu S N et al. Multiplexed polarization-OTDR system for multi-event detection[C](2015).

    [7] Corsi F, Galtarossa A, Palmieri L. Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique[J]. Journal of Lightwave Technology, 16, 1832-1843(1998).

    [8] Takada K, Noda J, Sasaki Y. Measurement of spatial distributions of mode coupling in polarisation-maintaining fibres[J]. Electronics Letters, 20, 119-121(1984).

    [9] Costa L, Magalhães R, Palmieri L et al. Fast and direct measurement of the linear birefringence profile in standard single-mode optical fibers[J]. Optics Letters, 45, 623-626(2020).

    [10] Nakazawa M, Tokuda M, Negishi Y. Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique[J]. Optics Letters, 8, 546-548(1983).

    [11] Wei C J, Chen H X, Chen X J et al. Distributed transverse stress measurement along an optic fiber using polarimetric OFDR[J]. Optics Letters, 41, 2819-2822(2016).

    [12] Zhang H X, Wang Y Y, Wen G Q et al. Frequency measurement of dynamic stress in polarization maintaining fibers[J]. IEEE Photonics Journal, 10, 7102511(2018).

    [13] Ding D L, Feng T, Zhao Z W et al. Demonstration of distributed fiber optic temperature sensing using polarization crosstalk analysis[C], JTu5A.105(2016).

    [14] Lin Z J, Lin Y M, Li H et al. High-performance polarization management devices based on thin-film lithium niobate[J]. Light: Science & Applications, 11, 93(2022).

    [15] Yang Y M, Kelley K, Sachet E et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 11, 390-395(2017).

    [16] Bao Q L, Zhang H, Wang B et al. Broadband graphene polarizer[J]. Nature Photonics, 5, 411-415(2011).

    [17] Yang J, Yuan Y G, Yu Z J et al. Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device[J]. Opto-Electronic Engineering, 45, 170625(2018).

    [18] Georgieva G, Seiler P M, Mai C et al. 2D grating coupler induced polarization crosstalk in coherent transceivers for next generation data center interconnects[C], W1C.4(2021).

    [19] Dai D X, Liu L, Gao S M et al. Polarization management for silicon photonic integrated circuits[J]. Laser & Photonics Reviews, 7, 303-328(2013).

    [20] Chen Y Z, Chen J D, Li W H et al. Modeling and mitigation of polarization crosstalk-induced nonlinearity for the polarization-multiplexed carrier self-homodyne system[J]. Optics Letters, 47, 1423-1426(2022).

    [21] Xu H N, Dai D X, Liu L et al. Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator[J]. Optics Express, 28, 10899-10908(2020).

    [22] Ahmed S Z, Ahmed I, Mia M B et al. Ultra-high extinction ratio polarization beam splitter with extreme skin-depth waveguide[J]. Optics Letters, 46, 2164-2167(2021).

    [23] Liu J Q, Zhang C X, Gao F Y et al. Method for improving the polarization extinction ratio of multifunction integrated optic circuits[J]. Optics Express, 29, 28096-28103(2021).

    [24] Taranta A, Fokoua E N, Mousavi S A et al. Exceptional polarization purity in antiresonant hollow-core optical fibres[J]. Nature Photonics, 14, 504-510(2020).

    [25] Lefèvre H C. The fiber-optic gyroscope: challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 19, 828-832(2013).

    [26] Rashleigh S, Marrone M. Polarization holding in elliptical-core birefringent fibers[J]. IEEE Journal of Quantum Electronics, 18, 1515-1523(1982).

    [27] Shute M W,, Brown C S, Ritger A J. A study of the polarization properties of AT&T’s rectangular polarization-maintaining fiber[J]. Proceedings of SPIE, 0841, 358-366(1987).

    [28] Veasey D L, Batchman T E, Hickernell R K et al. Waveguide polarizers with hydrogenated amorphous silicon claddings[J]. Optics Letters, 16, 717-719(1991).

    [29] Lutz D R. Fiber optic depolarizer[C], P15(1992).

    [32] Sears F M. Polarization-maintenance limits in polarization-maintaining fibers and measurements[J]. Journal of Lightwave Technology, 8, 684-690(1990).

    [33] Rogers A J. Polarisation optical time domain reflectometry[J]. Electronics Letters, 16, 489-490(1980).

    [34] Chen S, Giles I P. Optical coherence domain polarimetry: intensity and interferometric type for quasi-distributed optical fiber sensors[J]. Proceedings of SPIE, 1370, 217-225(1990).

    [35] Shatalin S, Juskaitiq R, Listvin V. Polarization optical frequency-domain reflectometry[C], WL1(1991).

    [36] Zhang H X, Xu T H, Jia D G et al. Effects of angular misalignment in interferometric detection of distributed polarization coupling[J]. Measurement Science and Technology, 20, 095112(2009).

    [38] Guo Z W, Zhang H X, Chen X W et al. Influence of vibration disturbance during polarization coupling measurement of polarization-maintaining fiber[J]. Applied Optics, 50, 3553-3558(2011).

    [39] Zhang H X, Ye W T, Chen X W et al. Coupling intensity measurement based on white light interferometry in the distributed long PMF sensors[J]. IEEE Sensors Journal, 12, 2905-2909(2012).

    [40] Li Z H, Meng Z, Chen X J et al. Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements[J]. Optics Letters, 37, 2775-2777(2012).

    [41] Li Z H, Meng Z, Liu T G et al. Complete measuring the polarization parameters of polarization-maintain fiber using distributed polarization crosstalk test method[J]. Proceedings of SPIE, 9233, 92332D(2014).

    [42] Li C, Yang J, Yu Z J et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 24, 16247-16257(2016).

    [43] Yang J, Yuan Y G, Zhou A et al. Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy[J]. Journal of Lightwave Technology, 32, 4243-4252(2014).

    [44] Li Z H, Yao X S, Chen X J et al. Complete characterization of polarization-maintaining fibers using distributed polarization analysis[J]. Journal of Lightwave Technology, 33, 372-380(2015).

    [45] Yu Z J, Yang J, Yuan Y G et al. High-resolution distributed polarization crosstalk measurement for polarization maintaining fiber with considerable dispersion[J]. Optics Express, 26, 29712-29723(2018).

    [46] Yu Z J, Yang J, Yuan Y G et al. Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry[J]. Optics Express, 24, 1587-1597(2016).

    [47] Yu Z J, Hou C C, Yuan Y G et al. High accuracy distributed polarization extinction ratio measurement for a polarization-maintaining device with strong polarization crosstalk[J]. Journal of Lightwave Technology, 39, 2177-2186(2021).

    [48] Yang J, Yuan Y G, Yu Z J et al. Optical coherence domain polarimetry technology and its application in measurement for evaluating components of high precision fiber-optic gyroscopes[J]. Acta Optica Sinica, 38, 0328007(2018).

    [50] Yu Z J, Zhuang Q Q, Zhu T Y et al. Distributed polarization crosstalk measurement based on optical frequency domain polarimetry[C](2021).

    [51] Zhuang Q Q, Lin C F, Yu Z J et al. SNR improvement of optical frequency domain polarimetry against laser frequency sweep nonlinearity[J]. Journal of Lightwave Technology, 41, 5614-5621(2023).

    [52] Yu Z J, Zhuang Q Q, Lin Y et al. Optical frequency domain polarimetry for distributed polarization crosstalk measurement beyond a 110 dB dynamic range[J]. Optics Letters, 47, 4271-4274(2022).

    [53] Yang J, Zou C, Lin C F et al. Noise compensation methods for optical fiber frequency sweeping interferometry: a review[J]. Journal of Lightwave Technology, 41, 4035-4050(2023).

    [54] Salehi M R, Cabon B. Theoretical and experimental analysis of influence of phase-to-intensity noise conversion in interferometric systems[J]. Journal of Lightwave Technology, 22, 1510-1518(2004).

    [55] Goldberg B D, Vakoc B J, Oh W Y et al. Performance of reduced bit-depth acquisition for optical frequency domain imaging[J]. Optics Express, 17, 16957-16968(2009).

    [56] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 44, 7630(2005).

    [57] Yuksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Optics Express, 17, 5845-5851(2009).

    [58] Ding Z Y, Liu T G, Meng Z et al. Note: improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform[J]. The Review of Scientific Instruments, 83, 066110(2012).

    [59] Xing J J, Zhang Y, Wang F et al. A method based on time-scale factor for correcting the nonlinear frequency sweeping in an OFDR system[J]. IEEE Photonics Journal, 11, 7101808(2019).

    [60] Guo Z, Han G C, Yan J Z et al. Ultimate spatial resolution realisation in optical frequency domain reflectometry with equal frequency resampling[J]. Sensors, 21, 4632(2021).

    [61] Laloue A, Nallatamby J C, Prigent M et al. An efficient method for nonlinear distortion calculation of the AM and PM noise spectra of FMCW radar transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 51, 1966-1976(2003).

    [62] Porranzl M, Wagner C, Jaeger H et al. On-wafer noise characterization of an automotive monostatic radar transceiver with self-interference evaluation[J]. IEEE Transactions on Microwave Theory and Techniques, 67, 3494-3505(2019).

    [63] Gorju G, Crozatier V, Lavielle V et al. Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser[J]. The European Physical Journal Applied Physics, 30, 175-183(2005).

    [64] Ayhan S, Scherr S, Bhutani A et al. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 3290-3301(2016).

    [65] Lin C F, Yang J, Yu Z J et al. Increased spurious-free dynamic range in frequency sweeping interferometry by suppression of parasitic amplitude modulation[J]. Journal of Lightwave Technology, 40, 7191-7199(2022).

    [66] Koshikiya Y, Fan X Y, Ito F. Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry[J]. Journal of Lightwave Technology, 28, 3323-3328(2010).

    [67] Du Y, Liu T G, Ding Z Y et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 6, 7902811(2014).

    [68] Fan X Y, Koshikiya Y, Ito F. Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR[J]. Optics Express, 19, 19122-19128(2011).

    [69] Sagiv O Y, Arbel D, Eyal A. Correcting for spatial-resolution degradation mechanisms in OFDR via inline auxiliary points[J]. Optics Express, 20, 27465-27472(2012).

    [70] Lin C F, Zou C, Mou T L et al. Phase noise elimination in frequency sweeping interferometry based on a common-path interferometer[J]. Optics Letters, 47, 4810-4813(2022).

    [71] Williams P A, Rose A H, Wang C M. Rotating-polarizer polarimeter for accurate retardance measurement[J]. Applied Optics, 36, 6466-6472(1997).

    [72] Goldstein D H. Mueller matrix dual-rotating retarder polarimeter[J]. Applied Optics, 31, 6676-6683(1992).

    [73] Williams P A. Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion[J]. Applied Optics, 38, 6508-6515(1999).

    [74] Zhu H B, Yang J, Zhang H L et al. Metrological traceability of high polarization extinction ratio (PER) based on precision coaxial rotating polarization-maintaining fiber[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1003210(2022).

    [75] Zhu H B, Yang J, Zhang H L et al. Influence of position deviations on the performance of 80 dB adjustable polarization extinction ratio generator[J]. Optical Fiber Technology, 74, 103135(2022).

    [76] Hu Q H, Zhu X Q, Ma L N et al. Advances in passive-interferometric type fiber Bragg grating-based hydrophones[J]. Laser & Optoelectronics Progress, 60, 1106015(2023).

    [77] Qiu J L, Wang L, Huang T C et al. Review of development of interferometric fiber-optic gyroscopes[J]. Acta Optica Sinica, 42, 1706004(2022).

    [78] Zhuang Q Q, Lin Y C, Lin C et al. Optical frequency domain polarimetry based on a self-referenced unbalanced Mach-Zehnder interferometer[J]. Optics Letters, 48, 2817-2820(2023).

    [79] Pillon J, Louf F, Boiron H et al. Thermomechanical analysis of the effects of homogeneous thermal field induced in the sensing coil of a fiber-optic gyroscope[J]. Finite Elements in Analysis and Design, 212, 103826(2022).

    [80] Gao T X, Li J, Lan S Q et al. Study on polarization error of resonant fiber optical gyroscopes in varying temperature environments[J]. Acta Optica Sinica, 43, 1906007(2023).

    [81] Hou C C. Error analysis and suppression method of distributed polarization crosstalk measurement[D](2020).

    [82] Lu L. Research on distributed stress sensing based on polarization mode coupling[D](2015).

    Tools

    Get Citation

    Copy Citation Text

    Zhangjun Yu, Jun Yang, Chen Zou, Cuofu Lin, Yuncai Wang, Yuwen Qin. Optical Frequency Domain Distributed Polarization Measurement Technology and Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0112002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Oct. 10, 2023

    Accepted: Nov. 29, 2023

    Published Online: Jan. 29, 2024

    The Author Email: Jun Yang (yangj@gdut.edu.cn)

    DOI:10.3788/LOP232272

    CSTR:32186.14.LOP232272

    Topics