APPLIED LASER, Volume. 44, Issue 4, 123(2024)
Spatial Terahertz Communication Channel Modeling Technology
[1] [1] AKYILDIZ I F, JORNET J M, HAN C. TeraNets: Ultra-broadband communication networks in the terahertz band[J]. IEEE Wireless Communications, 2014, 21(4): 130-135.
[3] [3] TOMIO H, KUWAHARA T, FUJITA S, et al. Assembly and integration of optical downlink terminal VSOTA on microsatellite RISESAT[C]//Proc SPIE 11180, International Conference on Space Optics-ICSO 2018, Chania, Greece, SPIE. 2019, 11180: 2147-2157.
[4] [4] JANSON S W, WELLE R P. The NASA optical communication and sensor demonstration program-an update[C]//28th Annual AIAA/USU Conference on Small Satellites. Los Angeles: SSC14. 2014: 4-7.
[6] [6] DUAN W Q, SONG R L, LU C S. Research progress of terahertz satellite-ground communication[C]//2021 International Conference on Computer Communication and Artificial Intelligence (CCAI). Guangzhou, China: IEEE, 2021: 146-149.
[7] [7] KUKUTSU N, HIRATA A, KOSUGI T, et al. 10-gbit/s wireless transmission systems using 120-GHz-band photodiode and MMIC technologies[C]//2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium. Greensboro, NC, USA. IEEE, 2009: 1-4.
[8] [8] KALLFASS I, ANTES J, LOPEZ-DIAZ D, et al. Broadband active integrated circuits for Terahertz communication[C]//European Wireless 2012; 18th European Wireless Conference. Poznan, Poland. VDE, 2012: 1-5.
[9] [9] HARTER T, FLLNER C, KEMAL J N, et al. Generalized Kramers-Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 2020, 14: 601-606.
[10] [10] CHEN Z, ZHANG B, ZHANG Y, et al. 220 GHz outdoor wireless communication system based on a Schottky-diode transceiver[J]. IEICE Electronics Express, 2016, 13(9): 20160282.
[11] [11] NIU Z Q, ZHANG B, WANG J L, et al. The research on 220GHz multicarrier high-speed communication system[J]. China Communications, 2020, 17(3): 131-139.
[19] [19] BALANIS C A. Modern antenna handbook[M]. Hoboken: Wiley, 2007.
[20] [20] AKYILDIZ I F, HAN C, NIE S. Combating the distance problem in the millimeter wave and terahertz frequency bands[J]. IEEE Communications Magazine, 2018, 56(6): 102-108.
[22] [22] LIEBE H J. MPM—An atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6): 631-650.
[23] [23] PARDO J R, CERNICHARO J, SERABYN E. Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(12): 1683-1694.
[24] [24] PAINE S. The am atmospheric model (v. 13.0)[EB/OL]. (2023-09-19). https://doi.org/10.5281/zenodo.8161261.
[25] [25] ITU. Recommendation P.676-11[EB/OL]. (2016-09-30)[2017-03-01]. https://www.itu.int/rec/R-REC-P.676-11-201609-I.
[26] [26] SILES G A, RIERA J M, GARCIA-DEL-PINO P. Atmospheric attenuation in wireless communication systems at millimeter and THz frequencies wireless corner[J]. IEEE Antennas and Propagation Magazine, 2015, 57(1): 48-61.
[29] [29] Specific attenuation model for rain for use in prediction methods. ITU-R: ITU-R P.838-3[S]. Geneva, Switzerland: ITU, 2005, 3.
[30] [30] LAWS J O, PARSONS D A. The relation of raindrop-size to intensity[J]. Transactions, American Geophysical Union, 1943, 24(2): 452-460.
[31] [31] MARSHALL J S, PALMER W M K. The distribution of raindrops with size[J]. Journal of Meteorology, 1948, 5(4): 165-166.
[32] [32] WATSON P A, BRUSSAARD G. Atmospheric modelling and millimetre wave propagation[J]. Journal of Atmospheric and Terrestrial Physics, 1995, 57(13): 1676-1677.
[33] [33] JOSS J, THAMS J C, WALDVOGEL A. The variation of raindrop size distributions at Locarno[C]//Proceeding of International Conference on Cloud Physics. Toronto, Ontario, Canada: International Association on Meteorology and Atmospheric Physics, Toronto, Ontario, Canad: International Association on Meteorology and Atmospheric Physics. 1968: 369-373.
[34] [34] SEKINE M, LIND G. Rain attenuation of centimeter, millimeter and submillimeter radio waves[C]//1982 12th European Microwave Conference. Helsinki, Finland. IEEE, 1982: 584-589.
[35] [35] ATLAS D, ULBRICH C W. The physical basis for attenuation-rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods[J]. Journal de Recherches Atmospheriques, 1974, 8: 275-298.
[36] [36] HIRATA A, YAMAGUCHI R, TAKAHASHI H, et al. Effect of rain attenuation for a 10-Gb/s 120 GHz-band millimeter wave wireless link[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(12): 3099-3105.
[37] [37] ISHII S, KINUGAWA M, WAKIYAMA S, et al. Rain attenuation in the microwave-to-terahertz waveband[J]. Wireless Engineering and Technology, 2016, 7(2): 59-66.
[38] [38] MARZUKI, YOSEVA M, HASHIGUCHI H, et al. Characteristics of rain attenuation for microwave-to-terahertz waveband from raindrop size distribution observation in Indonesia[C]//2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring). Rome, Italy. IEEE, 2019: 362-367.
[39] [39] NOROUZIAN F, MARCHETTI E, GASHINOVA M, et al. Rain attenuation at millimeter wave and low-THz frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 421-431.
[40] [40] PREZ-PENA S, RIERA J M, BENARROCH A, et al. Variability of rain attenuation in the 100-200 GHz band calculated from experimental drop size distributions[C]//2021 15th European Conference on Antennas and Propagation (EuCAP). Dusseldorf, Germany. IEEE, 2021: 1-5.
[41] [41] FANG S H, CHENG Y C, CHIEN Y R. Exploiting sensed radio strength and precipitation for improved distance estimation[J]. IEEE Sensors Journal, 2018, 18(16): 6863-6873.
[42] [42] ZENG Y H, YANG X F, WANG L D, et al. An equivalent dielectric model for terahertz propagation in rainfall environment[C]//2019 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). London, UK. IEEE, 2019: 1-3.
[43] [43] LIEBE H J, HUFFORD G A, MANABE T. A model for the complex permittivity of water at frequencies below 1 THz[J]. International Journal of Infrared and Millimeter Waves, 1991, 12(7): 659-675.
[44] [44] SMITH G B. Dielectric constants for mixed media[J]. Journal of Physics D: Applied Physics, 1977, 10(4): L39-L42.
[49] [49] LI H Y, WU Z S, LI H. Propagation of 0.1~0.8 THz waves in sand-dust[C]//Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory. Guangzhou. IEEE, 2010: 449-452.
[51] [51] DU R, NOROUZIAN F, MARCHETTI E, et al. Characterisation of attenuation by sand in low-THz band[C]//2017 IEEE Radar Conference (RadarConf). Seattle, WA, USA. IEEE, 2017: 294-297.
[53] [53] NOROUZIARI F, MARCHETTI E, HOARE E, et al. Low-THz wave snow attenuation[C]//2018 International Conference on Radar (RADAR). Brisbane, QLD, Australia. IEEE, 2018: 1-4.
[54] [54] RENAUD D L, FEDERICI J F. Terahertz attenuation in snow and sleet[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40(8): 868-877.
[55] [55] GUNN K L S, MARSHALL J S. The distribution with size of aggregate snowflakes[J]. Journal of the Atmospheric Sciences, 1958, 15(5): 452-461.
[56] [56] ISHII S, SAYAMA S, KAMEI T. Measurement of rain attenuation in Terahertz wave range[J]. Wireless Engineering and Technology, 2011, 3(2): 119-124.
[57] [57] AMARASINGHE Y, ZHANG W, ZHANG R, et al. Scattering of terahertz waves by snow[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(2): 215-224.
[59] [59] SWIFT C, JONES W, GRANTHAM W. Microwave remote sensing[J]. IEEE Antennas and Propagation Society Newsletter, 1980, 22(5): 4-9.
[60] [60] RAHMAN A K, ANUAR M S, ALJUNID S A, et al. Study of rain attenuation consequence in free space optic transmission[C]// Telecommunication Technologies 2008 and Malaysia Conference on Photonics. Nctt-Mcp: IEEE, 2009: 64-70.
[61] [61] ELLISON W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range-25THz and the temperature range-100 ℃[J]. Journal of Physical and Chemical Reference Data, 2007, 36(1): 1-18.
[64] [64] WANG R, YAO J Q, XU D G, et al. The physical theory and propagation model of THz atmospheric propagation[J]. Journal of Physics: Conference Series, 2011, 276: 012223.
[65] [65] BAO L W, ZHAO H K, ZHENG G X, et al. Scintillation of THz transmission by atmospheric turbulence near the ground[C]//2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI). Nanjing, China. IEEE, 2012: 932-936.
[66] [66] MA J, MOELLER L, FEDERICI J. Terahertz performance in atmospheric turbulence[C]//2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Tucson, AZ, USA. IEEE, 2014: 1-2.
[67] [67] TAHERKHANI M, ALI SADEGHZADEH R, KASHANI Z G. Attenuation analysis of THz/IR waves under different turbulence conditions using gamma-gamma model[C]//Electrical Engineering (ICEE), Iranian Conference on. Mashhad, Iran. IEEE, 2018: 424-428.
[68] [68] CANG L, ZHAO H K, ZHENG G X. The impact of atmospheric turbulence on terahertz communication[J]. IEEE Access, 2019, 7: 88685-88692.
[69] [69] TAHERKHANI M, KASHANI Z G, ALI SADEGHZADEH R. On the performance of THz wireless LOS links through random turbulence channels[J]. Nano Communication Networks, 2020, 23: 100282.
[70] [70] AL-HABASH A, ANDREWS L C, PHILLIPS R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.
[71] [71] FLATT S, BRACHER C, WANG G Y. Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation[J]. Journal of the Optical Society of America A, 1994, 11(7): 2080-2092.
[72] [72] BARRIOS R, DIOS F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence[J]. Optics & Laser Technology, 2013, 45: 13-20.
[73] [73] CHAUHAN P S, TIWARI D, SONI S K. New analytical expressions for the performance metrics of wireless communication system over Weibull/Lognormal composite fading[J]. AEU-International Journal of Electronics and Communications, 2017, 82: 397-405.
[74] [74] ALI JAMSHED M, NAUMAN A, ALI BABAR A M, et al. Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey[J]. IEEE Access, 2020, 8: 113246-113261.
[75] [75] NIE S, AKYILDIZ I F. Channel modeling and analysis of inter-small-satellite links in terahertz band space networks[J]. IEEE Transactions on Communications, 2021, 69(12): 8585-8599.
[76] [76] LI Y B, CHEN Y. Propagation modeling and analysis for terahertz inter-satellite communications using FDTD methods[C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, QC, Canada. IEEE, 2021: 1-6.
[77] [77] YANG J S, LI H, XU Z. Analysis of channel characteristics between satellite and space station in terahertz band based on ray tracing[J]. Radio Science, 2021, 56(9): 1-16.
[78] [78] BAI L T, ZHU Z B, LI X J. Analysis of THz space communication link based on STK[J]. Journal of Physics: Conference Series, 2021, 1971(1): 012073.
[80] [80] HAN C, BICEN A, AKYILDIZ I F. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2402-2412.
[82] [82] HU X, GUO K X, WU B Y, et al. A deterministic terahertz channel model for inter-satellite communication link[C]//2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium. Chengdu, China. IEEE, 2021: 1-2.
Get Citation
Copy Citation Text
Ma Chensheng, He Yuanzhi. Spatial Terahertz Communication Channel Modeling Technology[J]. APPLIED LASER, 2024, 44(4): 123
Category:
Received: Oct. 17, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Yuanzhi He (he_yuanzhi@126.com)