Advanced Photonics, Volume. 4, Issue 2, 024001(2022)
Tunable metasurfaces towards versatile metalenses and metaholograms: a review
Fig. 1. Tunable metalenses by light source. (a) Schematic illustration of spin-decoupled metalenses.69 (b) Simulated and experimental electric field intensity distributions at line
Fig. 2. Tunable metalenses by electrical bias. (a) Schematic view of LC integrated metalenses that change functionality achromatic focusing to dispersive focusing when applying voltage bias to LCs.78 (b) Side view of TN LCs integrated electrically tunable metalenses. It modulates the polarization state of the incident beam depending on the applied voltage bias.79 (c) Schematic of a focus tunable graphene metalens when DC voltage bias is applied to this metalens.85 (d) Variation of focal length and focal spot intensity when the design is a packed pattern (top) and shifted bezel pattern (bottom).85 (e) Schematic of tunable graphene metalenses in which the chemical potential of graphene is controlled by applying a gate voltage.88 (f) Schematic view of electrically tunable metalenses in which the refractive index of BTO antennas is changed by applying voltage bias.90
Fig. 3. Tunable metalenses by non-electrical input. (a) Schematic of metalenses that are tuned mechanically by stretching the substrate to tune the focal length.96 (b) Measured longitudinal beam profiles according to different stretch ratios (top), intensity distributions of transmitted cross polarized light with different stretch ratios (bottom left), measured and calculated stretch ratio-focal length graph (bottom right).96 (c) Schematic illustration of metalenses that are tuned mechanically by rotating the substrate (left) and phase distribution of one of two lenses (right).97 (d) Schematic view of a tunable metalenses system that consists of two cubic metasurfaces.98 (e) Schematic illustration of MEMS tunable metalenses in which the focal length is tuned by controlling the distance between two lenses.99 (f) Schematic illustration of varifocal metalenses in which the focal length is tuned by exploiting the phase change of GSST by furnace annealing.100 (g) Schematic of varifocal metalenses using phase-change material
Fig. 4. Tunable metaholograms by light source. (a) Schematic of tunable metaholograms that generate dual images that can be changed by the polarization state of an incident light beam. (b) Experimentally obtained holograms at incident wavelengths of 24 nm (left) and 475 nm (right).129 (c) Design principle of OAM multiplexing metaholograms and metahologram images with a planar wavefront (
Fig. 5. Tunable metaholograms by electrical bias. (a) Schematic of three major states of LC (nematic, smectic, isotropic). (b) Design and demonstration of electrically tunable dielectric metasurfaces that use LCs.149 (c) Working principle of the electrically controlled digital metasurface device (DMSD). (d) SEM image of the DMSD and experimental results by independent control of seven electrodes.150 (e) Schematic of the bifunctional vectorial metasurfaces with LC analyzer. (f) SEM image of fabricated metasurfaces, and metaholograms that can be tuned by applying different voltages [scale bars: (left)
Fig. 6. Tunable metaholograms by non-electrical input. (a) Changing phase geometry (amorphous, semicrystalline, crystalline) that can construct SAM-OAM conversion by tuning the crystallization level of GST. (b) SEM images of fabricated metasurfaces and two different metaholographic images in response to three crystallization levels (top: RCP, bottom: LCP).158 (c) Schematic of the hydrogenating metasurfaces. (d) Four different holographic images during two hydrogenation and two dehydrogenation processes.160 (e) Illustration of the surface pressure-responsive designer LC; (f) experimental results before (left, LCP) and after (right, RCP) surface pressure by touch of finger.164 (g) Schematic of a gas sensor with LC-integrated metahologram. (h) The gas sensor changes optical images when hazardous gas is detected.34
|
Get Citation
Copy Citation Text
Jaekyung Kim, Junhwa Seong, Younghwan Yang, Seong-Won Moon, Trevon Badloe, Junsuk Rho, "Tunable metasurfaces towards versatile metalenses and metaholograms: a review," Adv. Photon. 4, 024001 (2022)
Category: Reviews
Received: Aug. 31, 2021
Accepted: Dec. 28, 2021
Published Online: Mar. 9, 2022
The Author Email: Rho Junsuk (jsrho@postech.ac.kr)