Journal of Synthetic Crystals, Volume. 49, Issue 6, 1083(2020)
Topology Optimization Design of One-dimensional Multi-phase Phononic Crystals Based on Evolutionary Algorithms
[1] [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987,58(20): 2059-2062.
[2] [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987,58(23): 2486-2489.
[3] [3] Kushwaha M S, Halevi P, Dobrzynski L. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993,71(13): 2022-2025.
[4] [4] Martínez-Sala R, Sancho J, Sánchez J V. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554): 241.
[5] [5] Yang X W, Lee J S, Kim Y Y. Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization[J]. Journal of Sound and Vibration,2016,383: 89-107.
[6] [6] Tian Y P, Tan Z H, Han X, et al. Phononic crystal lens with an asymmetric scatterer[J]. Journal of Physics D: Applied Physics, 2019,52: 025102.
[7] [7] Zafar L R, Huang J, Khan M A. Quality enhancement and insertion loss reduction of a rectangular resonator by employing an ultra-wide band gap diamond phononic crystal[J]. Chinese Journal of Physics, 2020,65: 481-490.
[10] [10] Jensen J. Phononic band gaps and vibrations in one-and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration,2003,266: 1053-1078.
[12] [12] Thomson W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics,1950,21: 89-93.
[14] [14] Xu W K, Yang T Z, Wang W. Double-negative dynamic properties in one-dimensional multi-phase metamaterial based on the symmetrical equivalent layer[J]. Waves in Random and Complex Media,2013, 23(3): 258-266.
[18] [18] He J J, Kang Z. Achieving directional propagation of elastic waves via topolopgy optimization[J]. Ultrasonics,2018,82: 1-10.
[19] [19] Han X K, Zhang Z. Topological optimization of phononic crystal thin plate by a genetic algorithm[J].Scientific Reports,2019,9: 8331.
[20] [20] Xu W K, Ning J Y, Lin Z B, et al. Multi-objective topology optimization of two-dimensional multi-phase microstructure phononic crystals[J].Materials Today Communications,2020,22: 100801.
[21] [21] Hussein M I, Hamza K, Hulbert G M. Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics[J].Structural Multidisciplinary Optimization,2006,31: 60-75.
[22] [22] Hussein M I, Hulbert G M, Scott R A. Dispersive elastodynamics of 1D banded materials and structures: analysis[J].Journal of Sound and Vibration,2005,289: 779-806.
[23] [23] Hussein M I, Hulbert G M, Scott R A. Dispersive elastodynamics of 1D banded materials and structures: design[J].Journal of Sound and Vibration,2007,307: 865-893.
[24] [24] Huang Y, Liu S T, Zhao J. A gradient-based optimization method for the design of layered phononic band-gap materials[J]. Acta Mechanica Solida Sinica,2016,29: 429-443.
[25] [25] Mathews J, Walkerm R. Mathematical methods of physics[M]. 2nd ed. USA: Benjamin-Cummings, 1970.
[26] [26] Dong H W, Su X X, Wang Y S, et al. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm[J].Structural Multidisciplinary Optimization,2014,50: 593-604.
[27] [27] Yi G, Youn B D. A comprehensive survey on topology optimization of phononic crystals[J].Structural Multidisciplinary Optimization,2016,54: 1315-1344.
Get Citation
Copy Citation Text
GUO Kaihong, ZHAO Zheng, XU Weikai. Topology Optimization Design of One-dimensional Multi-phase Phononic Crystals Based on Evolutionary Algorithms[J]. Journal of Synthetic Crystals, 2020, 49(6): 1083
Category:
Received: --
Accepted: --
Published Online: Aug. 7, 2020
The Author Email: GUO Kaihong (82783722@qq.com)
CSTR:32186.14.