Cell Research, Volume. 35, Issue 8, 551(2025)

In situ structure of the mouse sperm central apparatus reveals mechanistic insights into asthenozoospermia

Zhu Yun, Lin Tingting, Yin Guoliang, Tai Linhua, Chen Lianwan, Ma Jing, Huang Guoning, Lu Yi, Zhang Zhiyong, Wang Binbin, Chen Suren, and Sun Fei
References(73)

[1] [1] Afzelius, B. A. Cilia-related diseases.J. Pathol.204, 470–477(2004).

[2] [2] Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies.Nat. Rev. Mol. Cell Biol.18, 533–547(2017).

[3] [3] Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies.N. Engl. J. Med.364, 1533–1543(2011).

[4] [4] Viswanadha, R., Sale, W. S. & Porter, M. E. Ciliary motility: regulation of axonemal dynein motors.Cold Spring Harb. Perspect. Biol.9, a018325(2017).

[5] [5] Ishikawa, T. Axoneme structure from motile cilia.Cold Spring Harb. Perspect. Biol.9, a018325(2017).

[6] [6] Omoto, C. K. et al. Rotation of the central pair microtubules in eukaryotic flagella.Mol. Biol. Cell10, 1–4(1999).

[7] [7] Oda, T., Yanagisawa, H., Yagi, T. & Kikkawa, M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity.J. Cell Biol.204, 807–819(2014).

[8] [8] Smith, E. F. & Yang, P. F. The radial spokes and central apparatus: mechanochemical transducers that regulate flagellar motility.Cell Motil. Cytoskel.57, 8–17(2004).

[9] [9] Yoshimura, M. & Shingyoji, C. Effects of the central pair apparatus on microtubule sliding velocity in sea urchin sperm flagella.Cell Struct. Funct.24, 43–54(1999).

[10] [10] Carbajal-Gonzlez, B. I. et al. Conserved structural motifs in the central pair complex of eukaryotic flagella.Cytoskeleton70, 101–120(2013).

[11] [11] Han, L. et al. Cryo-EM structure of an active central apparatus.Nat. Struct. Mol. Biol.29, 472–482(2022).

[12] [12] Gui, M., Wang, X., Dutcher, S. K., Brown, A. & Zhang, R. Ciliary central apparatus structure reveals mechanisms of microtubule patterning.Nat. Struct. Mol. Biol.29, 483–492(2022).

[13] [13] Teves, M. E., Nagarkatti-Gude, D. R., Zhang, Z. B. & Strauss, J. F. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes.Cytoskeleton73, 3–22(2016).

[14] [14] Chen, Z. et al. In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes.Nat. Struct. Mol. Biol.30, 360–369(2023).

[15] [15] Leung, M. R. et al. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility.EMBO J.40, e107410(2021).

[16] [16] Chen, Z. et al. De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking.Cell186, 5041–5053(2023).

[17] [17] Tai, L., Yin, G., Huang, X., Sun, F. & Zhu, Y. In-cell structural insight into the stability of sperm microtubule doublet.Cell Discov.9, 116(2023).

[18] [18] Skerrett-Byrne, D. A. et al. Global profiling of the proteomic changes associated with the post-testicular maturation of mouse spermatozoa.Cell Rep.41, 111655(2022).

[19] [19] Gao, J. et al. DomainFit: Identification of protein domains in cryo-EM maps at intermediate resolutionusing AlphaFold2-predictedmodels.Structure32, 1248–1259(2024).

[20] [20] Ponting, C. P. A novel domain suggests a ciliary function for ASPM, a brain size determining gene.Bioinformatics22, 1031–1035(2006).

[21] [21] Fu, G. et al. Structural organization of the C1a-e-c supercomplex within the ciliary central apparatus.J. Cell Biol.218, 4236–4251(2019).

[22] [22] Walensky, L. D., Roskams, A. J., Lefkowitz, R. J., Snyder, S. H. & Ronnett, G. V. Odorant receptors and desensitization proteins colocalize in mammalian sperm.Mol. Med.1, 130–141(1995).

[23] [23] Smith, E. F. & Lefebvre, P. A. PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella.Mol. Biol. Cell8, 455–467(1997).

[24] [24] Teves, M. E. et al. Sperm-associated antigen-17 gene is essential for motile cilia function and neonatal survival.Am. J. Respir. Cell Mol. Biol.48, 765–772(2013).

[25] [25] Leung, M. R. et al. Structural diversity of axonemes across mammalian motile cilia.Nature637, 1170–1177(2025).

[26] [26] Tanaka-Hayashi, A. et al. Is D-aspartate produced by glutamic-oxaloacetic transaminase-1 like 1 (Got1l1): a putative aspartate racemase?Amino Acids47, 79–86(2015).

[27] [27] Tomita, K. et al. The effect of D-aspartate on spermatogenesis in mouse testis.Biol. Reprod.94, 30(2016).

[28] [28] Tegha-Dunghu, J. et al. MAP1S controls microtubule stability throughout the cell cycle in human cells.J. Cell Sci.127, 5007–5013(2014).

[29] [29] Cheung, S., Xie, P., Rosenwaks, Z. & Palermo, G. D. Profiling the male germline genome to unravel its reproductive potential.Fertil. Steril.119, 196–206(2023).

[30] [30] Gui, M. et al. SPACA9 is a lumenal protein of human ciliary singlet and doublet microtubules.Proc. Natl. Acad. Sci. USA119, e2207605119(2022).

[31] [31] Gui, M. et al. Structures of radial spokes and associated complexes important for ciliary motility.Nat. Struct. Mol. Biol.28, 29–37(2021).

[32] [32] Grossman-Haham, I. et al. Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating.Nat. Struct. Mol. Biol.28, 20–28(2021).

[33] [33] Chen, D. T. N., Heymann, M., Fraden, S., Nicastro, D. & Dogic, Z. ATP consumption of eukaryotic flagella measured at a single-cell level.Biophys. J.109, 2562–2573(2015).

[34] [34] Maekawa, M. et al. Stage-specific expression of mouse germ cell-less-1(mGCL-1), and multiple deformations during mgcl-1 deficient spermatogenesis leading to reduced fertility.Arch. Histol. Cytol.67, 335–347(2004).

[35] [35] Kimura, T. et al. Mouse germ cell-less as an essential component for nuclear integrity.Mol. Cell. Biol.23, 1304–1315(2003).

[36] [36] Mori, T. et al. CFAP47 is implicated in X-linked polycystic kidney disease.Kidney Int. Rep.9, 3580–3591(2024).

[37] [37] Zhang, X. et al. Differential requirements of IQUB for the assembly of radial spoke 1 and the motility of mouse cilia and flagella.Cell Rep.41, 111683(2022).

[38] [38] Sapiro, R. et al. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6.Mol. Cell. Biol.22, 6298–6305(2002).

[39] [39] Miyata, H. et al. Testis-enriched kinesin KIF9 is important for progressive motility in mouse spermatozoa.FASEB J.34, 5389–5400(2020).

[40] [40] Tu, C. et al. Novel mutations in SPEF2 causing different defects between flagella and cilia bridge: the phenotypic link between MMAF and PCD.Hum. Genet.139, 257–271(2020).

[41] [41] Lechtreck, K. F. & Witman, G. B. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility.J. Cell Biol.176, 473–482(2007).

[42] [42] Lechtreck, K. F., Delmotte, P., Robinson, M. L., Sanderson, M. J. & Witman, G. B. Mutations in Hydin impair ciliary motility in mice.J. Cell Biol.180, 633–643(2008).

[43] [43] Wargo, M. J. & Smith, E. F. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella.Proc. Natl. Acad. Sci. USA100, 137–142(2003).

[44] [44] Zheng, S. et al. AreTomo: An integrated software package for automated markerfree, motion-corrected cryo-electron tomographic alignment and reconstruction.J. Struct. Biol. X6, 100068(2022).

[45] [45] Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp.Nat. Methods16, 1146–1152(2019).

[46] [46] Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3. 5 in cells.Nat. Methods18, 186–193(2021).

[47] [47] Lindemann, C. B. & Lesich, K. A. The mechanics of cilia and flagella: What we know and what we need to know.Cytoskeleton81, 648–668(2024).

[48] [48] Lindemann, C. B. & Lesich, K. A. The many modes of flagellar and ciliary beating: Insights from a physical analysis.Cytoskeleton78, 36–51(2021).

[49] [49] Lindemann, C. B., Orlando, A. & Kanous, K. S. The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition.J. Cell Sci.102, 249–260(1992).

[50] [50] Liao, H. Q. et al. WDR87 interacts with CFAP47 protein in the middle piece of spermatozoa flagella to participate in sperm tail assembly.Mol. Hum. Reprod.29, gaac042(2022).

[51] [51] Liu, M. et al. A novel mutation in CFAP47 causes male infertility due to multiple morphological abnormalities of the sperm flagella.Front. Endocrinol.14, 1155639(2023).

[52] [52] Ge, H. et al. Mutations in CFAP47, a previously reported MMAF causative gene, also contribute to the respiratory defects in patients with PCD.Mol. Genet. Genom. Med.12, e2278(2024).

[53] [53] Fontana, P. et al. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold.Science376, eabm9326(2022).

[54] [54] Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760(2009).

[55] [55] McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res.20, 1297–1303(2010).

[56] [56] Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.Nucleic Acids Res.38, e164(2010).

[57] [57] Venkatraman, E. S. & Olshen, A. B. A faster circular binary segmentation algorithm for the analysis of array CGH data.Bioinformatics23, 657–663(2007).

[58] [58] Cooper, T. G. et al. World Health Organization reference values for human semen characteristics.Hum. Reprod. Update16, 231–245(2010).

[59] [59] World Health Organization.WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th edition. (2021).

[60] [60] Gardner, D. K. & Lane, M. Culture and selection of viable blastocysts: a feasible proposition for human IVF?Hum. Reprod. Update3, 367–382(1997).

[61] [61] Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting.Hum. Reprod.26, 1270–1283(2011).

[62] [62] Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging.J. Struct. Biol.197, 191–198(2017).

[63] [63] Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift.J. Struct. Biol.208, 107396(2019).

[64] [64] Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD.J. Struct. Biol.116, 71–76(1996).

[65] [65] Castano-Diez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments.J. Struct. Biol.178, 139–151(2012).

[66] [66] Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3.Elife7, e42166(2018).

[67] [67] He, J., Li, T. & Huang, S. Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning.Nat. Commun.14, 3217(2023).

[68] [68] Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis.J. Comput. Chem.25, 1605–1612(2004).

[69] [69] Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers.Protein Sci.30, 70–82(2021).

[70] [70] Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.Nature596, 583–589(2021).

[71] [71] Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr.66, 486–501(2010).

[72] [72] Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.Acta Crystallogr. D Struct. Biol.75, 861–877(2019).

[73] [73] Dai, D., Ichikawa, M., Peri, K., Rebinsky, R. & Huy Bui, K. Identification and mapping of central pair proteins by proteomic analysis.Biophys. Physicobiol.17, 71–85(2020).

Tools

Get Citation

Copy Citation Text

Zhu Yun, Lin Tingting, Yin Guoliang, Tai Linhua, Chen Lianwan, Ma Jing, Huang Guoning, Lu Yi, Zhang Zhiyong, Wang Binbin, Chen Suren, Sun Fei. In situ structure of the mouse sperm central apparatus reveals mechanistic insights into asthenozoospermia[J]. Cell Research, 2025, 35(8): 551

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Nov. 20, 2024

Accepted: Aug. 26, 2025

Published Online: Aug. 26, 2025

The Author Email:

DOI:10.1038/s41422-025-01135-2

Topics