Chinese Journal of Lasers, Volume. 51, Issue 19, 1901008(2024)

Research Progress of Highly RE‐Doped Silica Fibers and Short‐Cavity Fiber Lasers (Invited)

Yafei Wang1, Mengting Guo1, Fan Wang1, Chongyun Shao1, Yan Jiao3, Meng Wang1, Lei Zhang1, Hehe Dong1, Suya Feng1, Shikai Wang1, Danping Chen1, Chunlei Yu1,2、*, and Lili Hu1,2、**
Author Affiliations
  • 1Research Center of Specialty Glass and Fiber, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang , China
  • 3Juxin Photonics Technology (Taizhou) Co., Ltd., Taizhou 318000, Zhejiang , China
  • show less
    References(97)

    [1] Hu L L[M]. Rare earth doped silica fiber and its applications(2023).

    [2] Yan D P[M]. Industrial fiber laser(2022).

    [3] Yang Z M, Xu S H[M]. Single frequency fiber laser(2017).

    [4] Spiegelberg C, Geng J H, Hu Y D et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 22, 57-62(2004).

    [5] Zhang W R, Chen S Y, Su R T et al. Single-frequency linearly-polarized gain-switched DFB pulsed fiber laser[J]. Optics & Laser Technology, 158, 108808(2023).

    [6] Zhang L, Sheng Q, Chen L et al. Single-frequency Tm-doped fiber laser with 215 mW at 2.05 µm based on a Tm/Ho-codoped fiber saturable absorber[J]. Optics Letters, 47, 3964-2967(2022).

    [8] Martinez A, Yamashita S. 10 GHz fundamental mode fiber laser using a graphene saturable absorber[J]. Applied Physics Letters, 101, 041118(2012).

    [9] Ou S M, Yu Z Q, Guo L, et al[J]. Optics Express, 30, 43543-43550(2022).

    [10] Liu G Y, Jiang X H, Wang A M et al. Robust 700 MHz mode-locked Yb∶fiber laser with a biased nonlinear amplifying loop mirror[J]. Optics Express, 26, 26003-26008(2018).

    [12] Fu S J, Zhu X S, Zong J et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser[J]. Optics Express, 29, 30637-30643(2021).

    [13] Lee W, Geng J H, Jiang S B et al. 1.8 mJ, 3.5 kW single-frequency optical pulses at 1572 nm generated from an all-fiber MOPA system[J]. Optics Letters, 43, 2264-2267(2018).

    [15] AlYahyaei K, Zhu X S, Norwood R A et al. 871 nm single-frequency fiber laser for Yb+ ion optical clock[J]. Applied Physics Letters, 124, 211103(2024).

    [17] Xu S H, Yang Z M, Zhang W N et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser[J]. Optics Letters, 36, 3708-3710(2011).

    [19] Kuan P W, Li K F, Zhang L et al. 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 28, 1525-1528(2016).

    [20] Zhang J X, Shi W, Shi C D et al. Research of novel highly thulium-doped silicate glass fiber and related fiber lasers[J]. Infrared and Laser Engineering, 50, 20200424(2021).

    [21] Wang W L, Lin W, Cheng H H et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz[J]. Optics Express, 27, 10438-10448(2019).

    [22] Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes[J]. Optics Express, 19, 6155-6163(2011).

    [23] Fu S J, Zhu X S, Zong J et al. Single-frequency fiber laser at 880 nm[J]. Optics Express, 30, 32600-32609(2022).

    [26] Liang Z H, Lin W, Wu J F et al. >10 GHz femtosecond fiber laser system at 2.0 μm[J]. Optics Letters, 47, 1867-1870(2022).

    [27] Sun Y, Feng S Y, Wang X et al. Pulsed laser amplification based on self-developed Yb-doped phosphate fiber with large mode field[J]. Chinese Journal of Lasers, 50, 257-258(2023).

    [28] Wang L Y, Zhao X T, Lv N et al. Efficient 2075-nm laser emission from Ho3+-doped fluorotellurite glass in a compact all-fiber structure[J]. Optics Letters, 48, 2401-2404(2023).

    [29] Fu S J, Zhu X S, Wang J F et al. L-band wavelength-tunable Er3+-doped tellurite fiber lasers[J]. Journal of Lightwave Technology, 38, 1435-1438(2020).

    [30] Geng J H, Wu J F, Jiang S B et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 32, 355-357(2007).

    [31] Schuster K, Unger S, Aichele C et al. Material and technology trends in fiber optics[J]. Advanced Optical Technologies, 3, 447-468(2014).

    [33] Saha M, Pal A, Sen R. Vapor phase chelate delivery technique for fabrication of rare earth doped optical fiber[C], 9-12(2012).

    [34] Ye C G, Koponen J, Kimmelma O et al. Characterization of chirally-coupled-core (3C) fibers fabricated with direct nanoparticle deposition (DND)[J]. Proceedings of SPIE, 9728, 972817(2016).

    [37] Zhang W, Wu J L, Zhou G Y et al. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology[J]. Laser Physics, 26, 035801(2016).

    [38] Liu S. Preparation and properties of Yb-doped quartz glass and large mode-field fiber[D](2015).

    [39] Chu Y B, Ma Y X, Yang Y et al. Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology[J]. Optics Letters, 41, 1225-1228(2016).

    [40] Zhang J, Wen J P, Wang Y F et al. Watt-level gigahertz femtosecond fiber laser system at 920 nm[J]. Optics Letters, 47, 4941-4944(2022).

    [41] Leconte B, Gilles H, Robin T et al. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser[J]. Optics Express, 26, 10000-10006(2018).

    [43] Wang Y F, Chen W W, Cao J K et al. Boosting the branching ratio at 900 nm in Nd3+ doped germanophosphate glasses by crystal field strength and structural engineering for efficient blue fiber lasers[J]. Journal of Materials Chemistry C, 7, 11824-11833(2019).

    [46] Chen B Y, Jiang T X, Zong W J et al. 910 nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging[J]. Optics Express, 24, 16544-16549(2016).

    [48] Rong X F, Li W S, Xu Z W et al. 919.8 nm self-Q-switched Nd-doped silica all-fiber laser[J]. Optics Communications, 473, 125939(2020).

    [49] Li X, Li S, Li X et al. Low repetition rate 915 nm figure-9 ultrafast laser with all-fiber structure[J]. Optics Express, 32, 11271-11280(2024).

    [50] Li T J, Sun H, Liu M et al. Sub-50 fs, 0.5 W average power Nd-doped fiber amplifier at 920 nm[J]. Optics Letters, 49, 57-60(2024).

    [51] Wei X M, Kong C H, Sy S et al. Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber[J]. Biomedical Optics Express, 7, 5208-5217(2016).

    [52] le Corre K, Robin T, Cadier B et al. Mode-locked all-PM Nd-doped fiber laser near 910 nm[J]. Optics Letters, 46, 3564-3567(2021).

    [54] Mkrtchyan A A, Gladush Y G, Melkumov M A et al. Nd-doped polarization maintaining all-fiber laser with dissipative soliton resonance mode-locking at 905 nm[J]. Journal of Lightwave Technology, 39, 5582-5588(2021).

    [56] Gao X, Zong W J, Chen B Y et al. Core-pumped femtosecond Nd∶fiber laser at 910 and 935 nm[J]. Optics Letters, 39, 4404-4407(2014).

    [57] Florentin R, le Corre K, Robin T et al. Optimization of Nd-doped LMA fibers for high-power laser emission near 915 nm[J]. IEEE Photonics Journal, 16, 1500706(2024).

    [58] Wang Y F, Chen Y G, Wang S K et al. Realization of 890 nm and 910 nm single-frequency laser by self-developed Nd-doped quartz single-mode fiber[J]. Chinese Journal of Lasers, 50, 1516001(2023).

    [60] Wang Y F, Lin Z Q, Guo M T et al. Study on 10 W class 920 nm all-fiber picosecond laser with high beam quality[J]. Chinese Journal of Lasers, 51, 1416002(2024).

    [61] Wang Y F, Chen Y G, Wang S K et al. Coordination engineering in Nd3+-doped silica glass for improving repetition rate of 920-nm ultrashort-pulse fiber laser[J]. Advanced Photonics Nexus, 2, 066002(2023).

    [63] Tao Y, Jiang M, Li C et al. Low-threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser[J]. Optics Letters, 46, 3705-3708(2021).

    [64] Sun B, Ma L, Ren L et al. Dual-HR-FBG based single-frequency fiber laser at 1030 nm[J]. Laser Physics Letters, 20, 065101(2023).

    [65] Chen L, Zhu J J, Li P et al. Wavelength tuning with temperature in single longitudinal mode DBR fiber laser[J]. Infrared and Laser Engineering, 52, 20220570(2023).

    [66] Yang Q B, Wang Y F, Yu C L et al. High ytterbium concentration Yb/Al/P/Ce Co-doped silica fiber for 1-µm ultra-short cavity fiber laser application[J]. Optics Express, 31, 33741-33752(2023).

    [67] Li Y Y, Deng X, Fu S J et al. High-power, high-efficiency single-frequency DBR fiber laser at 1064 nm based on Yb3+-doped silica fiber[J]. Optics Letters, 48, 598-601(2023).

    [68] Lv R D, Chen T, Huang J et al. Fabrication of integrated single frequency DBR fiber laser directly on YDF by femtosecond laser[J]. IEEE Photonics Technology Letters, 35, 1319-1322(2023).

    [69] Wang H S, Xiong S S, Song J Z et al. High temperature resistant ultra-short DBR Yb-doped fiber laser[J]. Applied Optics, 58, 4474-4478(2019).

    [70] Rybaltovsky A, Yashkov M, Abramov A et al. Optimization of the core compound for ytterbium ultra-short cavity fiber lasers[J]. Fibers, 11, 52(2023).

    [71] Wang Y F, Yang Q B, Wang F et al. Single-frequency DBR lasing by integrating FBGs into germanium-free photosensitive highly Yb3+-doped silica fibers[J]. Optics Express, 32, 17571-17580(2024).

    [72] Cheng H H, Chen K F, Tao Y G et al. Dissipative solitons in centimeter-scale fiber lasers[J]. Journal of Lightwave Technology, 41, 6779-6785(2023).

    [74] Chen K F, Gan L N, Tao Y G et al. Environmentally stable, spectral-shape-controllable, GHz femtosecond Yb-doped fiber laser[J]. Chinese Optics Letters, 21, 061601(2023).

    [75] Li C, Ma Y X, Gao X et al. 1 GHz repetition rate femtosecond Yb∶fiber laser for direct generation of carrier-envelope offset frequency[J]. Applied Optics, 54, 8350-8353(2015).

    [76] Hou Y B, Zhang Q, Qi S X et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference[J]. Optics Letters, 43, 1383-1386(2018).

    [77] Wang F, Lin Z Q, Shao C Y et al. Centimeter-scale Yb-free heavily Er-doped silica fiber laser[J]. Optics Letters, 43, 2356-2359(2018).

    [79] Lü R D, Chen T, Pham X et al. High-temperature linearly polarized single-frequency fiber lasers based on a non-polarization-maintaining FBG preparation through a femtosecond laser[J]. Optics Letters, 47, 4111-4114(2022).

    [80] Lipatov D, Egorova O, Rybaltovsky A et al. Highly Er/Yb-co-doped photosensitive core fiber for the development of single-frequency telecom lasers[J]. Photonics, 10, 796(2023).

    [81] Byun H, Pudo D, Chen J et al. High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter[J]. Optics Letters, 33, 2221-2223(2008).

    [82] Byun H, Sander M Y, Motamedi A et al. Compact, stable 1 GHz femtosecond Er-doped fiber lasers[J]. Applied Optics, 49, 5577-5582(2010).

    [83] Song J Z, Hu X H, Wang H S et al. All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate[J]. Laser Physics Letters, 16, 095102(2019).

    [84] Song J Z, Liu Y S, Zhang J G. L-band mode-locked femtosecond fiber laser with gigahertz repetition rate[J]. Applied Optics, 58, 7577-7581(2019).

    [85] Song J Z, Wang H S, Huang X N et al. Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate[J]. Applied Optics, 58, 1733-1738(2019).

    [87] Ding Z X, Wang G R, Xiong Y F et al. Single-short-cavity dual-comb fiber laser with over 120 kHz repetition rate difference based on polarization multiplexing[J]. Optics Letters, 48, 5233-5236(2023).

    [88] Tao Y G, Wang F, Shao W L et al. Large mode-field area multi-element silica glass fibers for gigahertz ultrafast lasers[J]. Optics Express, 31, 30562-30569(2023).

    [91] Gapontsev D, Platonov N, Meleshkevich M et al. 20 W single-frequency fiber laser operating at 1.93 um[C], 6-11(2007).

    [92] Zhang Z, Boyland A J, Sahu J K et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm[J]. IEEE Photonics Technology Letters, 23, 417-419(2011).

    [93] Bolingbroke G N, Oermann M, Ng S W S et al. High-efficiency, single-frequency, polarized thulium-doped silica fiber lasers[J]. Optics Letters, 49, 4362-4365(2024).

    [94] Fu S J, Shi W, Lin J C et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber[J]. Optics Letters, 40, 5283-5286(2015).

    [95] Fu S J, Shi W, Sheng Q et al. Compact hundred-mW 2 μm single-frequency thulium-doped silica fiber laser[J]. IEEE Photonics Technology Letters, 29, 853-856(2017).

    [97] Liu L, Li C, Tao Y et al. Over 30 W single-frequency all-fiber amplifier at 1120 nm with high ASE suppression[J]. Applied Optics, 62, 1323-1327(2023).

    [98] Huang X Y, Cheng H H, Luo W et al. Er-activated hybridized glass fiber for laser and sensor in the extended wavebands[J]. Advanced Optical Materials, 9, 2101394(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yafei Wang, Mengting Guo, Fan Wang, Chongyun Shao, Yan Jiao, Meng Wang, Lei Zhang, Hehe Dong, Suya Feng, Shikai Wang, Danping Chen, Chunlei Yu, Lili Hu. Research Progress of Highly RE‐Doped Silica Fibers and Short‐Cavity Fiber Lasers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jul. 18, 2024

    Accepted: Sep. 2, 2024

    Published Online: Oct. 11, 2024

    The Author Email: Yu Chunlei (sdycllcy@siom.ac.cn), Hu Lili (hulili@siom.ac.cn)

    DOI:10.3788/CJL241063

    CSTR:32183.14.CJL241063

    Topics