Laboratory Animal and Comparative Medicine, Volume. 45, Issue 3, 318(2025)

Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models

HU Min1, DONG Lexuan2, GAO Yi2, XI Ziqi2, SHEN Zihao2, TANG Ruiyang2, LUAN Xin2, TANG Min2、*, and ZHANG Weidong1,2,3
Author Affiliations
  • 1School of Health Sciences & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
  • 2Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
  • 3School of Pharmacy, Naval Medical University, Shanghai 200433, China
  • show less
    References(61)

    [1] [1] AKHTAR A. The flaws and human harms of animal experimentation[J]. Camb Q Healthc Ethics, 2015, 24(4): 407-419. DOI: 10.1017/S0963180115000079.

    [2] [2] BALCOMBE J P. Laboratory environments and rodents' behavioural needs: a review[J]. Lab Anim, 2006, 40(3): 217-235. DOI: 10.1258/002367706777611488.

    [3] [3] TEBON P J, WANG B W, MARKOWITZ A L, et al. Drug screening at single-organoid resolutionviabioprinting and interferometry[J]. Nat Commun, 2023, 14(1): 3168. DOI: 10.1038/s41467-023-38832-8.

    [4] [4] LEVATO R, DUDARYEVA O, GARCIAMENDEZ-MIJARES C E, et al. Light-based vat-polymerization bioprinting[J]. Nat Rev Meth Primers, 2023, 3: 47. DOI: 10.1038/s43586-023-00231-0.

    [5] [5] KANG H W, LEE S J, KO I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nat Biotechnol, 2016, 34(3): 312-319. DOI: 10.1038/nbt.3413.

    [6] [6] JI S, GUVENDIREN M. Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Front Bioeng Biotechnol, 2017, 5: 23. DOI: 10.3389/fbioe.2017.00023.

    [7] [7] WANG T, HAN Y, WU Z J, et al. Tissue-specific hydrogels for three-dimensional printing and potential application in peripheral nerve regeneration[J]. Tissue Eng Part A, 2022, 28 (3-4): 161-174. DOI: 10.1089/ten.TEA.2021.0093.

    [8] [8] XIANG Y, MILLER K, GUAN J A, et al. 3D bioprinting of complex tissuesin vitro: state-of-the-art and future perspectives[J]. Arch Toxicol, 2022, 96(3): 691-710. DOI: 10.1007/s00204-021-03212-y.

    [9] [9] TANG M, RICH J N, CHEN S C. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier[J]. Adv Mater, 2021, 33(5): e2004776. DOI: 10.1002/adma.202004776.

    [10] [10] ZHOU L Y, FU J Z, HE Y. A review of 3D printing technologies for soft polymer materials[J]. Adv Funct Mater, 2020, 30(28): 2000187. DOI: 10.1002/adfm.202000187.

    [11] [11] U. S. Food and Drug Administration. Novel drug approvals for 2024[EB/OL]. (2024-05-22) [2025-06-05]. https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2024.

    [12] [12] VAN NORMAN G A. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach?[J]. JACC Basic Transl Sci, 2019, 4(7): 845-854. DOI: 10.1016/j.jacbts.2019.10.008.

    [13] [13] SCHUSTER B, JUNKIN M, KASHAF S S, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids[J]. Nat Commun, 2020, 11(1): 5271. DOI: 10.1038/s41467-020-19058-4.

    [14] [14] TUNG Y T, CHEN Y C, DERR K, et al. A 3D bioprinted human neurovascular unit model of glioblastoma tumor growth[J]. Adv Healthc Mater, 2024, 13(15): e2302831. DOI: 10.1002/adhm.202302831.

    [15] [15] DESIGAUX T, COMPERAT L, DUSSERRE N, et al. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity[J]. Bioact Mater, 2024, 42: 316-327. DOI: 10.1016/j.bioactmat.2024.08.037.

    [16] [16] TANG M, XIE Q, GIMPLE R C, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions[J]. Cell Res, 2020, 30 (10): 833-853. DOI: 10.1038/s41422-020-0338-1.

    [17] [17] TANG M, TIWARI S K, AGRAWAL K, et al. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity[J]. Small, 2021, 17(15): e2006050. DOI: 10.1002/smll.202006050.

    [18] [18] TANG M, QU Y J, HE P X, et al. Heat-inducible CAR-T overcomes adverse mechanical tumor microenvironment in a 3D bioprinted glioblastoma model[J]. Mater Today Bio, 2024, 26: 101077. DOI: 10.1016/j.mtbio.2024.101077.

    [19] [19] JOHNSON B N, LANCASTER K Z, HOGUE I B, et al. 3D printed nervous system on a chip[J]. Lab Chip, 2016, 16(8): 1393-1400. DOI: 10.1039/c5lc01270h.

    [20] [20] BANERJEE D, IVANOVA M M, CELIK N, et al. Biofabrication of anin-vitrobone model for Gaucher disease[J]. Biofabrication, 2023, 15(4): 045023. DOI: 10.1088/1758-5090/acf95a.

    [21] [21] SCARIAN E, BORDONI M, FANTINI V, et al. Patients' stem cells differentiation in a 3D environment as a promising experimental tool for the study of amyotrophic lateral sclerosis[J]. Int J Mol Sci, 2022, 23(10): 5344. DOI: 10.3390/ijms23105344.

    [22] [22] ROUSSEL R, STEG P G, MOHAMMEDI K, et al. Prevention of cardiovascular disease through reduction of glycaemic exposure in type 2 diabetes: a perspective on glucose-lowering interventions[J]. Diabetes Obes Metab, 2018, 20(2): 238-244. DOI: 10.1111/dom.13033.

    [23] [23] ALI A S M, WU D W, BANNACH-BROWN A, et al. 3D bioprinting of liver models: a systematic scoping review of methods, bioinks, and reporting quality[J]. Mater Today Bio, 2024, 26: 100991. DOI: 10.1016/j.mtbio.2024.100991.

    [24] [24] NGUYEN D G, FUNK J, ROBBINS J B, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicityin vitro[J]. PLoS One, 2016, 11(7): e0158674. DOI: 10.1371/journal.pone.0158674.

    [25] [25] JANANI G, PRIYA S, DEY S, et al. Mimicking native liver lobule microarchitecturein vitrowith parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10167-10186. DOI: 10.1021/acsami.2c00312.

    [26] [26] HE J Y, WANG J L, PANG Y, et al. Bioprinting of a hepatic tissue model using human-induced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation[J]. Int J Bioprint, 2022, 8(3): 581. DOI: 10.18063/ijb.v8i3.581.

    [27] [27] DEY S, BHAT A, JANANI G, et al. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury[J]. Biomaterials, 2024, 310: 122627. DOI: 10.1016/j.biomaterials.2024.122627.

    [28] [28] FERRI N, SIEGL P, CORSINI A, et al. Drug attrition during preclinical and clinical development: understanding and managing drug-induced cardiotoxicity[J]. Pharmacol Ther, 2013, 138(3): 470-484. DOI: 10.1016/j.pharmthera.2013.03.005.

    [29] [29] YANG K X, WANG L X, VIJAYAVENKATARAMAN S, et al. Recent applications of three-dimensional bioprinting in drug discovery and development[J]. Adv Drug Deliv Rev, 2024, 214: 115456. DOI: 10.1016/j.addr.2024.115456.

    [30] [30] ARAI K, MURATA D, TAKAO S, et al. Drug response analysis for scaffold-free cardiac constructs fabricated using bio-3D printer[J]. Sci Rep, 2020, 10(1): 8972. DOI: 10.1038/s41598-020-65681-y.

    [31] [31] IWANAGA S, HAMADA Y, TSUKAMOTO Y, et al. Design and fabrication of mature engineered pre-cardiac tissue utilizing 3D bioprinting technology and enzymatically crosslinking hydrogel[J]. Materials, 2022, 15(22): 7928. DOI: 10.3390/ma15227928.

    [32] [32] LIU S T, WANG Z H, CHEN X Y, et al. Multiscale anisotropic scaffold integrating 3D printing and electrospinning techniques as a heart-on-a-chip platform for evaluating drug-induced cardiotoxicity[J]. Adv Healthc Mater, 2023, 12(24): e2300719. DOI: 10.1002/adhm.202300719.

    [34] [34] BAI Y X, WANG Z J, HE X L, et al. Application of bioactive materials for osteogenic function in bone tissue engineering[J]. Small Methods, 2024, 8(8): e2301283. DOI: 10.1002/smtd.202301283.

    [35] [35] YAN Y F, CHEN H, ZHANG H B, et al. Vascularized 3D printed scaffolds for promoting bone regeneration[J]. Biomaterials, 2019, 190-191: 97-110. DOI: 10.1016/j.biomaterials.2018.10.033.

    [36] [36] VEGA S L, KWON M Y, BURDICK J A. Recent advances in hydrogels for cartilage tissue engineering[J]. Eur Cell Mater, 2017, 33: 59-75. DOI: 10.22203/eCM.v033a05.

    [37] [37] WENG T T, ZHANG W, XIA Y L, et al. 3D bioprinting for skin tissue engineering: Current status and perspectives[J]. J Tissue Eng, 2021, 12: 20417314211028574. DOI: 10.1177/20417314211028574.

    [38] [38] SHI Y, XING T L, ZHANG H B, et al. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs[J]. Biomed Mater, 2018, 13(3): 035008. DOI: 10.1088/1748-605X/aaa5b6.

    [39] [39] JIN R H, CUI Y C, CHEN H J, et al. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink[J]. Acta Biomater, 2021, 131: 248-261. DOI: 10.1016/j.actbio.2021.07.012.

    [40] [40] GOLD K A, SAHA B, RAJEEVA PANDIAN N K, et al. 3D bioprinted multicellular vascular models[J]. Adv Healthc Mater, 2021, 10(21): e2101141. DOI: 10.1002/adhm.202101141.

    [41] [41] WU X F, CHEN K, CHAI Q, et al. Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks[J]. Biomater Adv, 2022, 133: 112658. DOI: 10.1016/j.msec.2022.112658.

    [42] [42] LPEZ-CARRASCO A, MARTN-VA S, BURGOS-PANADERO R, et al. Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuro-blastoma cell line[J]. J Exp Clin Cancer Res, 2020, 39(1): 226. DOI: 10.1186/s13046-020-01729-1.

    [43] [43] REN X X, HUANG M L, WENG W X, et al. Personalized drug screening in patient-derived organoids of biliary tract cancer and its clinical application[J]. Cell Rep Med, 2023, 4(11): 101277. DOI: 10.1016/j.xcrm.2023.101277.

    [44] [44] LUC R, ASSENZA M R, MAIULLARI F, et al. Inhibition of the mTOR pathway and reprogramming of protein synthesis by MDM4 reduce ovarian cancer metastatic properties[J]. Cell Death Dis, 2021, 12(6): 558. DOI: 10.1038/s41419-021-03828-z.

    [45] [45] ZHAO Z Y, FENG X Q, WU H J, et al. Construction of a lung cancer 3D culture model based on alginate/gelatin micro-beads for drug evaluation[J]. Transl Lung Cancer Res, 2024, 13 (10): 2698-2712. DOI: 10.21037/tlcr-24-490.

    [46] [46] AL SHIHABI A, TEBON P J, NGUYEN H T L, et al. The landscape of drug sensitivity and resistance in sarcoma[J]. Cell Stem Cell, 2024, 31(10): 1524-1542.e4. DOI: 10.1016/j.stem.2024.08.010.

    [47] [47] SUN H, SUN L J, KE X D, et al. Prediction of clinical precision chemotherapy by patient-derived 3D bioprinting models of colorectal cancer and its liver metastases[J]. Adv Sci, 2024, 11 (2): e2304460. DOI: 10.1002/advs.202304460.

    [48] [48] PERRON U, GRASSI E, CHATZIPLI A, et al. Integrative ensemble modelling of cetuximab sensitivity in colorectal cancer patient-derived xenografts[J]. Nat Commun, 2024, 15 (1): 9139. DOI: 10.1038/s41467-024-53163-y.

    [49] [49] LI S, LV J, LI Z, et al. Overcoming multi-drug resistance in SCLC: A synergistic approach with venetoclax and hydroxychloroquine targeting the lncRNA LYPLAL1-DT/BCL2/BECN1 pathway[J]. Mol Cance, 2024, 23(1): 243. DOI: 10.1186/s12943-024-02145-1.

    [50] [50] HASHIMOTO T, NAKAMURA Y, FUJISAWA T, et al. The SCRUM-MONSTAR cancer-omics ecosystem: striving for a quantum leap in precision medicine[J]. Cancer Discov, 2024, 14(11): 2243-2261. DOI: 10.1158/2159-8290.CD-24-0206.

    [54] [54] HERPERS B, EPPINK B, JAMES M I, et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors[J]. Nat Cancer, 2022, 3(4): 418-436. DOI: 10.1038/s43018-022-00359-0.

    [55] [55] CHOI J, JUNG T Y, KIM J H, et al. Efficacy of recombinantBacillusCalmette-Gurin containing dltA inin vivothree-dimensional bio-printed bladder cancer-on-a-chip andex vivoorthotopic mouse model[J]. Investig Clin Urol, 2023, 64 (3): 296-305. DOI: 10.4111/icu.20220293.

    [56] [56] HONG G, KIM J, OH H, et al. Production of multiple cell-laden microtissue spheroids with a biomimetic hepatic-lobule-like structure[J]. Adv Mater, 2021, 33(36): 2102624. DOI: 10.1002/adma.202102624.

    [57] [57] LOPEZ M A, HUTTER L, PAGIN E, et al.In vivoefficacy proof of concept of a large-size bioprinted dermo-epidermal substitute for permanent wound coverage[J]. Front Bioeng Biotechnol, 2023, 11: 1217655. DOI: 10.3389/fbioe.2023.1217655.

    [58] [58] LIU Y, ZHANG Y F, MEI T X, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment[J]. Adv Sci, 2022, 9(9): e2104299. DOI: 10.1002/advs.202104299.

    [59] [59] JIANG Z R, JIN B, LIANG Z, et al. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization[J]. Biomaterials, 2024, 311: 122681. DOI: 10.1016/j.biomaterials.2024.122681.

    [60] [60] SUN Y Y, HUO Y Y, RAN X Y, et al. InstantTracheareconstruction using 3D-bioprintedC-shape biomimeticTracheabased on tissue-specific matrix hydrogels[J]. Bioact Mater, 2023, 32: 52-65. DOI: 10.1016/j.bioactmat.2023.09.011.

    [61] [61] SUN Z W, YUE X L, LIU L, et al. Bioprinted Notch ligand to function as stem cell niche improves muscle regeneration in dystrophic muscle[J]. Int J Bioprint, 2023, 9(3): 711. DOI: 10.18063/ijb.711.

    [62] [62] SUN B B, LIAN M F, HAN Y, et al. A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus reconstruction[J]. Bioact Mater, 2020, 6(1): 179-190. DOI: 10.1016/j.bioactmat.2020.06.022.

    [63] [63] XU Z Y, HUANG J J, LIU Y, et al. Extracellular matrix bioink boosts stemness and facilitates transplantation of intestinal organoids as a biosafe Matrigel alternative[J]. Bioeng Transl Med, 2022, 8(1): e10327. DOI: 10.1002/btm2.10327.

    [64] [64] NANMO A, YAN L, ASABA T, et al. Bioprinting of hair follicle germs for hair regenerative medicine[J]. Acta Biomater, 2023, 165: 50-59. DOI: 10.1016/j.actbio.2022.06.021.

    [65] [65] NG W L, GOH G L, GOH G D, et al. Progress and opportunities for machine learning in materials and processes of additive manufacturing[J]. Adv Mater, 2024, 36(34): e2310006. DOI: 10.1002/adma.202310006.

    Tools

    Get Citation

    Copy Citation Text

    HU Min, DONG Lexuan, GAO Yi, XI Ziqi, SHEN Zihao, TANG Ruiyang, LUAN Xin, TANG Min, ZHANG Weidong. Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models[J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 318

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 30, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: TANG Min (mit012@shutcm.edu.cn)

    DOI:10.12300/j.issn.1674-5817.2024.193

    Topics