Journal of Infrared and Millimeter Waves, Volume. 42, Issue 5, 611(2023)

[in Chinese]

Lei Ma, Liaoxin Sun*, and Feng Liu**
Author Affiliations
  • [in Chinese]
  • show less
    References(71)

    [1] Basov D N, Fogler M M, Garcia De Abajo F J. Polaritons in van der Waals materials[J]. Science, 354(2016).

    [2] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale[J]. Nature, 418, 159-162(2002).

    [3] Rivera N, Kaminer I. Light–matter interactions with photonic quasiparticles[J]. Nature Reviews Physics, 2, 538-561(2020).

    [4] Fei Z, Goldflam M D, Wu J S et al. Edge and Surface Plasmons in Graphene Nanoribbons[J]. Nano Lett, 15, 8271-8276(2015).

    [5] Fei Z, Rodin A S, Andreev G O et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 487, 82-85(2012).

    [6] Gerber J A, Berweger S, O'callahan B T et al. Phase-resolved surface plasmon interferometry of graphene[J]. Phys Rev Lett, 113, 055502(2014).

    [7] Koppens F H L, Chang D E, De Abajo F J G. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions[J]. Nano Letters, 11, 3370-3377(2011).

    [8] Nikitin A Y, Alonso-González P, Vélez S et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators[J]. Nature Photonics, 10, 239-243(2016).

    [9] Li P, Dolado I, Alfaro-Mozaz F J et al. Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials[J]. Nano Lett, 17, 228-235(2017).

    [10] Folland T G, Fali A, White S T et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials[J]. Nat Commun, 9, 4371(2018).

    [11] Zheng Z, Sun F, Xu N et al. Tunable Hyperbolic Phonon Polaritons in a Suspended van der Waals α‐MoO3 with Gradient Gaps[J]. Advanced Optical Materials, 10, 2102057(2021).

    [12] Tang J, Zhang J, Lv Y et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nat Commun, 12, 3265(2021).

    [13] Zhang L, Gogna R, Burg W et al. Photonic-crystal exciton-polaritons in monolayer semiconductors[J]. Nat Commun, 9, 713(2018).

    [14] Lundt N, Klembt S, Cherotchenko E et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer[J]. Nat Commun, 7, 13328(2016).

    [15] Jin C, Regan E C, Yan A et al. Observation of moire excitons in WSe(2)/WS(2) heterostructure superlattices[J]. Nature, 567, 76-80(2019).

    [16] Seyler K L, Rivera P, Yu H et al. Signatures of moire-trapped valley excitons in MoSe(2)/WSe(2) heterobilayers[J]. Nature, 567, 66-70(2019).

    [17] Park I K, Gong C, Kim K et al. Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2[J]. Physical Review B, 105(2022).

    [18] Barra-Burillo M, Muniain U, Catalano S et al. Microcavity phonon polaritons from the weak to the ultrastrong phonon-photon coupling regime[J]. Nat Commun, 12, 6206(2021).

    [19] Lee I H, He M, Zhang X et al. Image polaritons in boron nitride for extreme polariton confinement with low losses[J]. Nat Commun, 11, 3649(2020).

    [20] Li Z, Bao K, Fang Y et al. Correlation between incident and emission polarization in nanowire surface plasmon waveguides[J]. Nano Lett, 10, 1831-1835(2010).

    [21] Lu X B, Stepanov P, Yang W et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene[J]. Nature, 574, 653(2019).

    [22] Faure-Vincent J, Bellouard C T, Popova E et al. Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling[J]. Phys Rev Lett, 89, 107206(2002).

    [23] Hu G, Shen J, Qiu C W et al. Phonon Polaritons and Hyperbolic Response in van der Waals Materials[J]. Advanced Optical Materials, 8, 191393(2019).

    [24] Hu J, Xie W, Chen J et al. Strong hyperbolic-magnetic polaritons coupling in an hBN/Ag-grating heterostructure[J]. Opt Express, 28, 22095-22104(2020).

    [25] Dai S, Ma Q, Andersen T et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material[J]. Nat Commun, 6, 6963(2015).

    [26] Duan J, Alvarez-Perez G, Tresguerres-Mata A I F et al. Planar refraction and lensing of highly confined polaritons in anisotropic media[J]. Nat Commun, 12, 4325(2021).

    [27] Zheng Z B, Li J T, Ma T et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures[J]. Light Sci Appl, 6, e17057(2017).

    [28] Bensmann S, Gaussmann F, Lewin M et al. Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser[J]. Opt Express, 22, 22369-22381(2014).

    [29] Autore M, Li P, Dolado I et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit[J]. Light Sci Appl, 7, 17172(2018).

    [30] Dai S, Fei Z, Ma Q et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 343, 1125-1129(2014).

    [31] Giles A J, Dai S, Glembocki O J et al. Imaging of Anomalous Internal Reflections of Hyperbolic Phonon-Polaritons in Hexagonal Boron Nitride[J]. Nano Lett, 16, 3858-3865(2016).

    [32] Lyu B, Li H, Jiang L et al. Phonon Polariton-assisted Infrared Nanoimaging of Local Strain in Hexagonal Boron Nitride[J]. Nano Lett, 19, 1982-1989(2019).

    [33] Shi Z, Bechtel H A, Berweger S et al. Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride[J]. ACS Photonics, 2, 790-796(2015).

    [34] Yoxall E, Schnell M, Nikitin A Y et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity[J]. Nature Photonics, 9, 674-678(2015).

    [35] De Oliveira T, Norenberg T, Alvarez-Perez G et al. Nanoscale-Confined Terahertz Polaritons in a van der Waals Crystal[J]. Adv Mater, 33, e2005777(2021).

    [36] Ni G, Mcleod A S, Sun Z et al. Long-Lived Phonon Polaritons in Hyperbolic Materials[J]. Nano Lett, 21, 5767-5773(2021).

    [37] Ma W, Alonso-Gonzalez P, Li S et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 562, 557-562(2018).

    [38] Abedini Dereshgi S, Folland T G, Murthy A A et al. Lithography-free IR polarization converters via orthogonal in-plane phonons in alpha-MoO3 flakes[J]. Nat Commun, 11, 5771(2020).

    [39] Zhang Q, Ou Q, Hu G et al. Hybridized Hyperbolic Surface Phonon Polaritons at alpha-MoO3 and Polar Dielectric Interfaces[J]. Nano Lett, 21, 3112-3119(2021).

    [40] Wu B, Wang M, Wu F et al. Strong extrinsic chirality in biaxial hyperbolic material alpha-MoO3 with in-plane anisotropy[J]. Appl Opt, 60, 4599-4605(2021).

    [41] Low T, Chaves A, Caldwell J D et al. Polaritons in layered two-dimensional materials[J]. Nat Mater, 16, 182-194(2017).

    [42] Wu Y, Duan J, Ma W et al. Manipulating polaritons at the extreme scale in van der Waals materials[J]. Nature Reviews Physics, 4, 578-594(2022).

    [43] Zhang Q, Hu G, Ma W et al. Interface nano-optics with van der Waals polaritons[J]. Nature, 597, 187-195(2021).

    [44] Giles A J, Dai S, Vurgaftman I et al. Ultralow-loss polaritons in isotopically pure boron nitride[J]. Nat Mater, 17, 134-139(2018).

    [45] Zheng Z, Xu N, Oscurato S L et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Sci Adv, 5, eaav8690(2019).

    [46] Alvarez-Perez G, Folland T G, Errea I et al. Infrared Permittivity of the Biaxial van der Waals Semiconductor alpha-MoO3 from Near- and Far-Field Correlative Studies[J]. Adv Mater, 32, e1908176(2020).

    [47] Álvarez-Pérez G, Voronin K V, Volkov V S et al. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals[J]. Physical Review B, 100(2019).

    [48] Li Peining, Dolado Irene, Francisco Javier Alfaro-Mozaz et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 359, 892-896(2018).

    [49] Dolado I, Alfaro-Mozaz F J, Li P et al. Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons[J]. Adv Mater, 32, e1906530(2020).

    [50] Alfaro-Mozaz F J, Alonso-Gonzalez P, Velez S et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas[J]. Nat Commun, 8, 15624(2017).

    [51] Huang W, Sun F, Zheng Z et al. Van der Waals Phonon Polariton Microstructures for Configurable Infrared Electromagnetic Field Localizations[J]. Advanced Science, 8(2021).

    [52] Dai Z, Hu G, Si G et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nat Commun, 11, 6086(2020).

    [53] Barcelos I D, Canassa T A, Mayer R A et al. Ultrabroadband Nanocavity of Hyperbolic Phonon–Polaritons in 1D-Like α-MoO3[J]. ACS Photonics, 8, 3017-3026(2021).

    [54] Song X, Dereshgi S A, Palacios E et al. Enhanced Interaction of Optical Phonons in h-BN with Plasmonic Lattice and Cavity Modes[J]. ACS Appl Mater Interfaces, 13, 25224-25233(2021).

    [55] Yang S, Lu X, Zhang J et al. Reversible tuning from multi-mode laser to single-mode laser in coupled nanoribbon cavity[J]. Applied Physics Letters, 118(2021).

    [56] Wang L, Chen R, Xue M et al. Manipulating phonon polaritons in low loss (11)B enriched hexagonal boron nitride with polarization control[J]. Nanoscale, 12, 8188-8193(2020).

    [57] Taboada-Gutierrez J, Alvarez-Perez G, Duan J et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation[J]. Nat Mater, 19, 964-968(2020).

    [58] Zheng Z, Chen J, Wang Y et al. Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides[J]. Adv Mater, 30, e1705318(2018).

    [59] Schwartz J J, Le S T, Krylyuk S et al. Substrate-mediated hyperbolic phonon polaritons in MoO3[J]. Nanophotonics, 10, 1517-1527(2021).

    [60] Yang J, Tang J, Ghasemian M B et al. High-Q Phonon-polaritons in Spatially Confined Freestanding α-MoO3[J]. ACS Photonics, 9, 905-913(2022).

    [61] Duan J, Alvarez-Perez G, Voronin K V et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition[J]. Sci Adv, 7(2021).

    [62] Hu G, Ou Q, Si G et al. Topological polaritons and photonic magic angles in twisted alpha-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [63] Hu H, Chen N, Teng H et al. Doping-driven topological polaritons in graphene/alpha-MoO(3) heterostructures[J]. Nat Nanotechnol, 17, 940-946(2022).

    [64] Qu Y, Chen N, Teng H et al. Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in alpha-MoO3[J]. Adv Mater, e2105590(2022).

    [65] Sternbach. A J, Moore. S L, Rikhter. A et al. Negative refraction in hyperbolic hetero-bicrystals[J]. Science, 379, 555-557(2023).

    [66] Hu. H, Chen. N, Teng. H et al. Gate-tunable negative refraction of mid-infrared polaritons[J]. Science, 379, 558-561(2023).

    [67] Martin-Sanchez J, Duan J, Taboada-Gutierrez J et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas[J]. Sci Adv, 7, eabj0127(2021).

    [68] Ma L, Ge A, Sun L et al. Focusing of Hyperbolic Phonon Polaritons by Bent Metal Nanowires and Their Polarization Dependence[J]. ACS Photonics(2023).

    [69] Zheng Z, Jiang J, Xu N et al. Controlling and Focusing In-Plane Hyperbolic Phonon Polaritons in alpha-MoO3 with a Curved Plasmonic Antenna[J]. Adv Mater, 34, e2104164(2022).

    [70] Javier Martín-Sánchez J D, Taboada-Gutiérrez Javier, Álvarez-Pérez Gonzalo, Voronin Kirill V., Prieto Iván, Ma Weiliang, Bao Qiaoliang, Volkov Valentyn S., Hillenbrand Rainer, Nikitin Alexey Y., Alonso-González Pablo. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas[J]. Science advanced, 41(2021).

    [71] Zhang Qing, Ou Qingdong, Si Guangyuan et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals[J]. Science Advances, 8, eabn9774(2022).

    Tools

    Get Citation

    Copy Citation Text

    Lei Ma, Liaoxin Sun, Feng Liu. [J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 611

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 7, 2023

    Accepted: --

    Published Online: Aug. 30, 2023

    The Author Email: Liaoxin Sun (sunlx@mail.sitp.ac.cn), Feng Liu (sunlx@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2023.05.006

    Topics