High Power Laser and Particle Beams, Volume. 34, Issue 5, 056011(2022)
A supercritical carbon dioxide cycle efficiency analysis
[1] Liu Yaping, Wang Ying, Huang Diangui. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 189, 115900(2019).
[6] [6] Bell I H, Quoilin S, Wronski J, et al. CoolProp: An opensource referencequality thermophysical property library[C]ASME C 2nd International Seminar on C Power Systems. 2013.
[7] Witte F, Tuschy I. TESPy: Thermal Engineering Systems in Python[J]. Journal of Open Source Software, 5, 2178(2020).
[8] [8] Dostal V. A supercritical carbon dioxide cycle f next generation nuclear reacts[D]. Cambridge: Massachusetts Institute of Technology, 2004.
[9] [9] Gibbs J P. Power conversion system design f supercritical carbon dioxide cooled indirect cycle nuclear reacts[D]. Cambridge: Massachusetts Institute of Technology, 2008.
[10] [10] Balje O E. Turbomachines: A guide to design, ion they[M]. Hoboken: John Wiley & Sons, 1981.
[11] Sondelski B, Nellis G. Mass optimization of a supercritical CO2 Brayton cycle with a direct cooled nuclear reactor for space surface power[J]. Applied Thermal Engineering, 163, 114299(2019).
[12] Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal Mini/Micro channels[J]. Journal of Heat Transfer, 124, 413-420(2002).
Get Citation
Copy Citation Text
Shaohua Wang, Jiao Gao, Wenjie Ding, Hongwen Huang, Haibing Guo, Jimin Ma, Zhiyong Liu. A supercritical carbon dioxide cycle efficiency analysis[J]. High Power Laser and Particle Beams, 2022, 34(5): 056011
Category: Feature Issue on Application Technology of Research Reactor
Received: Nov. 26, 2021
Accepted: Apr. 2, 2022
Published Online: Jun. 2, 2022
The Author Email: