Journal of Synthetic Crystals, Volume. 49, Issue 11, 1984(2020)

Growth and Device Application of GaN ThreeDimensional Structure

WANG Xun, WANG Lai, HAO Zhibiao, LUO Yi, SUN Changzheng, HAN Yanjun, XIONG Bing, WANG Jian, and LI Hongtao
Author Affiliations
  • [in Chinese]
  • show less
    References(71)

    [1] [1] Wang J X, Wang L, Hao Z B, et al. Efficiency droop effect mechanism in an InGaN/GaN blue MQW LED[J]. Chinese Physics Letters, 2011, 28(11):118105.

    [2] [2] Schubert M F, Chhajed S, Kim J K, et al. Effect of dislocation density on efficiency droop in GaInN/GaN lightemitting diodes[J]. Applied Physics Letters, 2007, 91(23):231114.

    [3] [3] Rmer F, Witzigmann B. Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs[J]. Optics Express, 2014, 22(S6):A1440A1452.

    [4] [4] Piprek J, Li S. Electron leakage effects on GaNbased lightemitting diodes[J]. Optical and Quantum Electronics, 2010, 42(2):8995.

    [5] [5] Saito S, Hashimoto R, Hwang J, et al. InGaN lightEmitting diodes on cface sapphire substrates in green gap spectral range[J]. Applied Physics Express, 2013, 6(11):111004.

    [6] [6] Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaNbased lightemitting diodes[J]. Applied Physics Letters, 2001, 78(18): 26172619.

    [7] [7] Lai Y, Hsu T, Chang W H, et al. Piezoelectric fieldinduced quantumconfined stark effect in InGaN/GaN multiple quantum wells[J]. physica status solidi (b), 2001, 228(1):7780.

    [8] [8] Speck J S, Chichibu S F. Nonpolar and semipolar group III nitridebased materials[J]. Mrs Bulletin, 2009, 34(5):304312.

    [9] [9] Farrell R M, Young E C, Wu F, et al. Materials and growth issues for highperformance nonpolar and semipolar lightemitting devices[J]. Semiconductor ence Technology, 2012, 27(2):024001.

    [10] [10] Northrup J E. GaN and InGaN(112-2) surfaces: GroupIII adlayers and indium incorporation[J]. Applied Physics Letters, 2009, 95(13):L659667.

    [11] [11] Craven M, Chakraborty A, Imer B, et al. Structural and electrical characterization of aplane GaN grown on aplane SiC[J]. Physica status solidi (c), 2003(7): 21322135.

    [12] [12] Haskell B A, Chakraborty A, Wu F, et al. Microstructure and enhanced morphology of planar nonpolar mplane GaN grown by hydride vapor phase epitaxy[J]. Journal of Electronic Materials, 2005, 34(4): 357360.

    [13] [13] Masui H, Baker T J, Iza M, et al. Lightpolarization characteristics of electroluminescence from InGaN/GaN lightemitting diodes prepared on (1122)plane GaN[J]. Journal of Applied Physics, 2006, 100(11): 1423.

    [14] [14] Sharma R, Pattison P M, Masui H, et al. Demonstration of a semipolar (10) InGaN/GaN green light emitting diode[J]. Applied Physics Letters, 2005, 87(23): L382.

    [15] [15] Beaumont B, Gibart P. Metal organic vapor phase epitaxy of GaN and lateral overgrowth[J]. Optoelectronics Review, 1999, 3725(2): 213.

    [16] [16] Haller C, Carlin J F, Jacopin G, et al. Burying nonradiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency[J]. Applied Physics Letters, 2017, 111(26): 262101.

    [17] [17] Schmidt M C, Kim K C, Sato H, et al. High power and high external efficiencymplane InGaN light emitting diodes[J]. Japanese Journal of Applied Physics, 2007, 46(7): L126L128.

    [18] [18] Detchprohm T, Zhu M, Li Y, et al. Green light emitting diodes on aplane GaN bulk substrates[J]. Applied Physics Letters, 2008, 92(24): 241109.

    [19] [19] Wagner R S, Ellis W C. Vaporliquidsolid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4(5): 8990.

    [20] [20] Ahl J P, Behmenburg H, Giesen C, et al. Gold catalyst initiated growth of GaN nanowires by MOCVD[J]. 2011, 8(7/8): 23152317.

    [21] [21] Li Q, Wang G T. Improvement in aligned GaN nanowire growth using submonolayer Ni catalyst films[J]. Applied Physics Letters, 2008, 93(4): 043119.

    [22] [22] Lari L, Murray R T, Bullough T J, et al. Nanoscale compositional analysis of Nibased seed crystallites associated with GaN nanowire growth[J]. Physica E: Lowdimensional Systems and Nanostructures, 2008, 40(7): 24572461.

    [23] [23] Kuykendall T, Altoe M V P, Ogletree D F, et al. Catalystdirected crystallographic orientation control of GaN nanowire growth[J]. Nano Letters, 2014, 14(12): 67676773.

    [24] [24] Chen J, Xue C, Zhuang H, et al. Synthesis of GaN nanowires by Tb catalysis[J]. Applied Surface ence, 2008, 254(15): 47164719.

    [25] [25] Woo S G, Shin D K, ByungSung O, et al. GaN nanowire growth on Si substrate by utilizing MOCVD methods[J]. Journal of the Korean Institute of Electrical & Electronic Material Engineers, 2010, 23(11): 848853.

    [26] [26] Fang H, Yang Z J, Wang Y, et al. Analysis of mass transport mechanism in InGaN epitaxy on ridge shaped selective area growth GaN by metal organic chemical vapor deposition[J]. Journal of Applied Physics, 2008, 103(1): 362.

    [27] [27] Wunderer T, Lipski F, Hertkorn J, et al. Fabrication of 3D InGaN/GaN structures providing semipolar GaN planes for efficient green light emission[J]. Physica status solidi (c), 2009, 6(S2): S490S493.

    [28] [28] Ward B L, Nam O H, Hartman J D, et al. Electron emission characteristics of GaN pyramid arrays grown via organometallic vapor phase epitaxy[J]. Journal of Applied Physics, 1998, 84(9): 52385242.

    [29] [29] Yu H, Lee L K, Jung T, et al. Photoluminescence study of semipolar {101-1} InGaN/GaN multiple quantum wells grown by selective area epitaxy[J]. Applied Physics Letters, 2007, 90(14): 141906.

    [30] [30] Bae S Y, Kim D H, Lee D S, et al. Highly integrated InGaN/GaN semipolar micropyramid lightemitting diode arrays by confined selective area growth[J]. Electrochemical and SolidState Letters, 2011, 15(2):H47H50.

    [31] [31] Wunderer T, Lipski F, Schwaiger S, et al. Properties of blue and green InGaN/GaN quantum well emission on structured semipolar surfaces[J]. Japanese Journal of Applied Physics, 2009, 48(6): 060201.

    [32] [32] Scholz F, Wunderer T, Neubert B, et al. GaNbased lightemitting diodes on selectively grown semipolar crystal facets[J]. Mrs Bulletin, 2009, 34(5): 328333.

    [33] [33] Neubert B, Wunderer T, Brückner P, et al. Semipolar GaN/GaInN LEDs with more than 1 mW optical output power[J]. Journal of Crystal Growth, 2007, 298: 706709.

    [34] [34] Coulon P M, Alloing B, Brndli V, et al. Selective area growth of Gapolar GaN nanowire arrays by continuousflow MOVPE:a systematic study on the effect of growth conditions on the array properties[J]. Physica Status Solidi(b), 2015, 252(5): 10961103.

    [35] [35] Brubaker M D, Duff S M, Harvey T E, et al. Polaritycontrolled GaN/AlN nucleation layers for selectivearea growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy[J]. Crystal Growth & Design, 2016, 16(2): 596604.

    [36] [36] Hiramatsu K, Nishiyama K, Motogaito A, et al. Recent progress in selective area growth and epitaxial lateral overgrowth of IIInitrides: effects of reactor pressure in MOVPE growth[J]. Physica Status Solidi (a), 1999, 176(1): 535543.

    [37] [37] Wang L, Jin J, Hao Z, et al. Vshaped semipolar InGaN/GaN multiquantumwell lightemitting diodes directly grown on cplane patterned sapphire substrates[J]. Physica Status Solidi (a), 2017, 214(8): 1600810.

    [38] [38] Shen X, Wu Z, Li J, et al. Phosphorfree white emission from InGaN quantum wells grown on in situ formed submicronscale multifaceted GaN stripes[J]. Journal of Alloys and Compounds, 2019, 775: 752757.

    [39] [39] Nishizuka K, Funato M, Kawakami Y, et al. Efficient radiative recombination from 1122oriented InxGa1-xN multiple quantum wells fabricated by the regrowth technique[J]. Applied Physics Letters, 2004, 85(15): 31223124.

    [40] [40] Neubert B, Habel F, Brückner P, et al. Investigations on local Ga and In incorporation of GaInN quantum wells on facets of selectively grown GaN stripes[J]. Physica Status Solidi(c),2006,3(6):15871590.

    [41] [41] Matsuda Y, Funato M, Kawakami Y. Growth Mechanism of polarplanefree faceted InGaN quantum wells[J]. ICE Transactions on Electronics, 2018, 101(7): 532536.

    [42] [42] Sugahara T, Sato H, Hao M, et al. Direct evidence that dislocations are nonradiative recombination centers in GaN[J]. Japanese Journal of Applied Physics, 1998, 37(4): L398L400.

    [43] [43] Miyake H, Nakao K, Hiramatsu K. Blue emission from InGaN/GaN hexagonal pyramid structures[J]. Superlattices & Microstructures, 2007, 41(5): 341346.

    [44] [44] Ko Y H, Kim J H, Jin L H, et al. Hybrid lightemitting diodes: electrically driven quantum dot/wire/well hybrid lightemitting diodes[J]. Advanced Materials, 2011, 23(45): 53315331.

    [45] [45] Zhang X, Dapkus P D, Rich D H, et al. InGaN/GaN quantum well growth on pyramids of epitaxial lateral overgrown GaN[J]. Journal of Electronic Materials, 2000, 29(1): 1014.

    [46] [46] Lee M L, Yeh Y H, Tu S J, et al. Dualwavelength GaNbased LEDs grown on truncated hexagonal pyramids formed by selectivearea regrowth on Siimplanted GaN templates[J]. Optics Express, 2013, 21(S5):A864A871.

    [47] [47] Wachter C, Meyer A, Metzner S, et al. High wavelength tunability of InGaN quantum wells grown on semipolar GaN pyramid facets[J]. 2011, 248(3):605610.

    [48] [48] Ko Y H, Kim J H, Gong S H, et al. Red emission of InGaN/GaN double heterostructures on GaN nanopyramid structures[J]. ACS Photonics, 2015, 2(4): 515520.

    [49] [49] Wu Z, Chen P, Yang G, et al. Selective area epitaxy of semipolar InGaN/GaN multiple quantum wells on GaN microfacets using crossover stripe patterns[J]. Superlattices and Microstructures, 2015, 83: 2228.

    [50] [50] Pereira S, Correia M R, Pereira E, et al. Compositional pulling effects in InxGa1-xN/GaN layers:a combined depthresolved cathodoluminescence and Rutherford backscattering/channeling study[J]. Phys Rev b, 2001, 64(20): 205311.

    [51] [51] Wunderer T, Lipski F, Hertkorn J, et al. Fabrication of 3D InGaN/GaN structures providing semipolar GaN planes for efficient green light emission[J]. Physica Status Solidi (c), 2011, 6(s2): S490S493.

    [52] [52] Wunderer T, Wang J, Lipski F, et al. Semipolar GaInN/GaN lightemitting diodes grown on honeycomb patterned substrates[J]. Physica Status Solidi (c), 2010, 7(78): 21402143.

    [53] [53] Chen Y, Takeuchi T, Amano H, et al. Pit formation in GaInN quantum wells[J]. Applied Physics Letters, 1998, 72(6): 710712.

    [54] [54] Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by Vshaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency[J]. Physical Review Letters, 2005, 95(12): 127402.

    [55] [55] Wang X H, Jia H Q, Guo L W, et al. White lightemitting diodes based on a single InGaN emission layer[J]. Applied Physics Letters, 2007, 91(16): 4056.

    [56] [56] Chang S P, Chang J R, Huang J K, et al. Fabrication and optical properties of green emission semipolar {10-11} InGaN/GaN MQWs selective grown on GaN nanopyramid arrays[J]. MRS Proceedings, 2011, 1324.

    [57] [57] Cheng Y J, Chang S P, Lin D W, et al. Low efficiency droop green nanopyramid {1011} InGaN/GaN multiple quantum well LED[C]. CLEO: Applications and Technology. 2014.

    [58] [58] Wang Y, Shimma R, Yamamoto T, et al. The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE[J]. Journal of Crystal Growth, 2015, 416: 164168.

    [59] [59] So B M, Youn S B, Im I. Growth rate and composition of InGaN during InGaN/GaN quantum wells selective area metalorganic vapor phase epitaxy considering surface diffusion[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 17471751.

    [60] [60] Tchoe Y, Jo J, Kim M, et al. Variablecolor lightemitting diodes using GaN microdonut arrays[J]. Advanced Materials, 2014, 26(19): 30193023.

    [61] [61] Hong Y J, Lee C H, Yoon A, et al. Visiblecolortunable lightemitting diodes[J]. Advanced Materials, 2011, 23(29): 32843288.

    [62] [62] Park I K, Kim J Y, Kwon M K, et al. Phosphorfree white lightemitting diode with laterally distributed multiple quantum wells[J]. Applied Physics Letters, 2008, 92(9): 091110.

    [63] [63] Yang G F, Zhang Q, Wang J, et al. InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the applications for phosphorfree white lightemitting diodes[J]. Reviews in Physics, 2016, 1(C): 101119.

    [64] [64] Guo J, Jin S. Design for white light source based on RGB LED illumination module[J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(1): 145150.

    [65] [65] Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphorconverted white lightemitting diodes: recent advances in materials, techniques and properties[J]. Materials ence & Engineering R Reports, 2011, 71(1): 134.

    [66] [66] Kim J S, Jeon P E, Park Y H, et al. Whitelight generation through ultravioletemitting diode and whiteemitting phosphor[J]. Applied Physics Letters, 2004, 85(17): 36963698.

    [67] [67] Xie R J, Hirosaki N, Sakuma K, et al. Eu2+doped CaαSiAlON:a yellow phosphor for white lightemitting diodes[J]. Applied Physics Letters, 2004, 84(26): 54045406.

    [68] [68] Yeh P C, Hwa M C, Yu J W, et al. Photonassisted tunneling in GaN nanowire white light emitting diodes[J]. Physica status solidi (c), 2009, 6(S2): S538S540.

    [69] [69] Yang G, Chen P, Gao S, et al. Whitelight emission from InGaN/GaN quantum well microrings grown by selective area epitaxy[J]. Photonics Research, 2016, 4(1): 1720.

    [70] [70] Funato M, Kondou T, Hayashi K, et al. Monolithic polychromatic lightemitting diodes based on InGaN microfacet quantum wells toward tailormade solidstate Lighting[J]. Applied Physics Express, 2008, 1(1): 011106.

    [71] [71] Zhao J, Wei T, Zhang J, et al. Phosphorfree three dimensional hybrid white LED with high colorrendering index[J]. IEEE Photonics Journal, 2019, 11(3): 18.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xun, WANG Lai, HAO Zhibiao, LUO Yi, SUN Changzheng, HAN Yanjun, XIONG Bing, WANG Jian, LI Hongtao. Growth and Device Application of GaN ThreeDimensional Structure[J]. Journal of Synthetic Crystals, 2020, 49(11): 1984

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics