Journal of Synthetic Crystals, Volume. 49, Issue 11, 1984(2020)
Growth and Device Application of GaN ThreeDimensional Structure
[1] [1] Wang J X, Wang L, Hao Z B, et al. Efficiency droop effect mechanism in an InGaN/GaN blue MQW LED[J]. Chinese Physics Letters, 2011, 28(11):118105.
[2] [2] Schubert M F, Chhajed S, Kim J K, et al. Effect of dislocation density on efficiency droop in GaInN/GaN lightemitting diodes[J]. Applied Physics Letters, 2007, 91(23):231114.
[3] [3] Rmer F, Witzigmann B. Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs[J]. Optics Express, 2014, 22(S6):A1440A1452.
[4] [4] Piprek J, Li S. Electron leakage effects on GaNbased lightemitting diodes[J]. Optical and Quantum Electronics, 2010, 42(2):8995.
[5] [5] Saito S, Hashimoto R, Hwang J, et al. InGaN lightEmitting diodes on cface sapphire substrates in green gap spectral range[J]. Applied Physics Express, 2013, 6(11):111004.
[6] [6] Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaNbased lightemitting diodes[J]. Applied Physics Letters, 2001, 78(18): 26172619.
[7] [7] Lai Y, Hsu T, Chang W H, et al. Piezoelectric fieldinduced quantumconfined stark effect in InGaN/GaN multiple quantum wells[J]. physica status solidi (b), 2001, 228(1):7780.
[8] [8] Speck J S, Chichibu S F. Nonpolar and semipolar group III nitridebased materials[J]. Mrs Bulletin, 2009, 34(5):304312.
[9] [9] Farrell R M, Young E C, Wu F, et al. Materials and growth issues for highperformance nonpolar and semipolar lightemitting devices[J]. Semiconductor ence Technology, 2012, 27(2):024001.
[10] [10] Northrup J E. GaN and InGaN(112-2) surfaces: GroupIII adlayers and indium incorporation[J]. Applied Physics Letters, 2009, 95(13):L659667.
[11] [11] Craven M, Chakraborty A, Imer B, et al. Structural and electrical characterization of aplane GaN grown on aplane SiC[J]. Physica status solidi (c), 2003(7): 21322135.
[12] [12] Haskell B A, Chakraborty A, Wu F, et al. Microstructure and enhanced morphology of planar nonpolar mplane GaN grown by hydride vapor phase epitaxy[J]. Journal of Electronic Materials, 2005, 34(4): 357360.
[13] [13] Masui H, Baker T J, Iza M, et al. Lightpolarization characteristics of electroluminescence from InGaN/GaN lightemitting diodes prepared on (1122)plane GaN[J]. Journal of Applied Physics, 2006, 100(11): 1423.
[14] [14] Sharma R, Pattison P M, Masui H, et al. Demonstration of a semipolar (10) InGaN/GaN green light emitting diode[J]. Applied Physics Letters, 2005, 87(23): L382.
[15] [15] Beaumont B, Gibart P. Metal organic vapor phase epitaxy of GaN and lateral overgrowth[J]. Optoelectronics Review, 1999, 3725(2): 213.
[16] [16] Haller C, Carlin J F, Jacopin G, et al. Burying nonradiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency[J]. Applied Physics Letters, 2017, 111(26): 262101.
[17] [17] Schmidt M C, Kim K C, Sato H, et al. High power and high external efficiencymplane InGaN light emitting diodes[J]. Japanese Journal of Applied Physics, 2007, 46(7): L126L128.
[18] [18] Detchprohm T, Zhu M, Li Y, et al. Green light emitting diodes on aplane GaN bulk substrates[J]. Applied Physics Letters, 2008, 92(24): 241109.
[19] [19] Wagner R S, Ellis W C. Vaporliquidsolid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4(5): 8990.
[20] [20] Ahl J P, Behmenburg H, Giesen C, et al. Gold catalyst initiated growth of GaN nanowires by MOCVD[J]. 2011, 8(7/8): 23152317.
[21] [21] Li Q, Wang G T. Improvement in aligned GaN nanowire growth using submonolayer Ni catalyst films[J]. Applied Physics Letters, 2008, 93(4): 043119.
[22] [22] Lari L, Murray R T, Bullough T J, et al. Nanoscale compositional analysis of Nibased seed crystallites associated with GaN nanowire growth[J]. Physica E: Lowdimensional Systems and Nanostructures, 2008, 40(7): 24572461.
[23] [23] Kuykendall T, Altoe M V P, Ogletree D F, et al. Catalystdirected crystallographic orientation control of GaN nanowire growth[J]. Nano Letters, 2014, 14(12): 67676773.
[24] [24] Chen J, Xue C, Zhuang H, et al. Synthesis of GaN nanowires by Tb catalysis[J]. Applied Surface ence, 2008, 254(15): 47164719.
[25] [25] Woo S G, Shin D K, ByungSung O, et al. GaN nanowire growth on Si substrate by utilizing MOCVD methods[J]. Journal of the Korean Institute of Electrical & Electronic Material Engineers, 2010, 23(11): 848853.
[26] [26] Fang H, Yang Z J, Wang Y, et al. Analysis of mass transport mechanism in InGaN epitaxy on ridge shaped selective area growth GaN by metal organic chemical vapor deposition[J]. Journal of Applied Physics, 2008, 103(1): 362.
[27] [27] Wunderer T, Lipski F, Hertkorn J, et al. Fabrication of 3D InGaN/GaN structures providing semipolar GaN planes for efficient green light emission[J]. Physica status solidi (c), 2009, 6(S2): S490S493.
[28] [28] Ward B L, Nam O H, Hartman J D, et al. Electron emission characteristics of GaN pyramid arrays grown via organometallic vapor phase epitaxy[J]. Journal of Applied Physics, 1998, 84(9): 52385242.
[29] [29] Yu H, Lee L K, Jung T, et al. Photoluminescence study of semipolar {101-1} InGaN/GaN multiple quantum wells grown by selective area epitaxy[J]. Applied Physics Letters, 2007, 90(14): 141906.
[30] [30] Bae S Y, Kim D H, Lee D S, et al. Highly integrated InGaN/GaN semipolar micropyramid lightemitting diode arrays by confined selective area growth[J]. Electrochemical and SolidState Letters, 2011, 15(2):H47H50.
[31] [31] Wunderer T, Lipski F, Schwaiger S, et al. Properties of blue and green InGaN/GaN quantum well emission on structured semipolar surfaces[J]. Japanese Journal of Applied Physics, 2009, 48(6): 060201.
[32] [32] Scholz F, Wunderer T, Neubert B, et al. GaNbased lightemitting diodes on selectively grown semipolar crystal facets[J]. Mrs Bulletin, 2009, 34(5): 328333.
[33] [33] Neubert B, Wunderer T, Brückner P, et al. Semipolar GaN/GaInN LEDs with more than 1 mW optical output power[J]. Journal of Crystal Growth, 2007, 298: 706709.
[34] [34] Coulon P M, Alloing B, Brndli V, et al. Selective area growth of Gapolar GaN nanowire arrays by continuousflow MOVPE:a systematic study on the effect of growth conditions on the array properties[J]. Physica Status Solidi(b), 2015, 252(5): 10961103.
[35] [35] Brubaker M D, Duff S M, Harvey T E, et al. Polaritycontrolled GaN/AlN nucleation layers for selectivearea growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy[J]. Crystal Growth & Design, 2016, 16(2): 596604.
[36] [36] Hiramatsu K, Nishiyama K, Motogaito A, et al. Recent progress in selective area growth and epitaxial lateral overgrowth of IIInitrides: effects of reactor pressure in MOVPE growth[J]. Physica Status Solidi (a), 1999, 176(1): 535543.
[37] [37] Wang L, Jin J, Hao Z, et al. Vshaped semipolar InGaN/GaN multiquantumwell lightemitting diodes directly grown on cplane patterned sapphire substrates[J]. Physica Status Solidi (a), 2017, 214(8): 1600810.
[38] [38] Shen X, Wu Z, Li J, et al. Phosphorfree white emission from InGaN quantum wells grown on in situ formed submicronscale multifaceted GaN stripes[J]. Journal of Alloys and Compounds, 2019, 775: 752757.
[39] [39] Nishizuka K, Funato M, Kawakami Y, et al. Efficient radiative recombination from 1122oriented InxGa1-xN multiple quantum wells fabricated by the regrowth technique[J]. Applied Physics Letters, 2004, 85(15): 31223124.
[40] [40] Neubert B, Habel F, Brückner P, et al. Investigations on local Ga and In incorporation of GaInN quantum wells on facets of selectively grown GaN stripes[J]. Physica Status Solidi(c),2006,3(6):15871590.
[41] [41] Matsuda Y, Funato M, Kawakami Y. Growth Mechanism of polarplanefree faceted InGaN quantum wells[J]. ICE Transactions on Electronics, 2018, 101(7): 532536.
[42] [42] Sugahara T, Sato H, Hao M, et al. Direct evidence that dislocations are nonradiative recombination centers in GaN[J]. Japanese Journal of Applied Physics, 1998, 37(4): L398L400.
[43] [43] Miyake H, Nakao K, Hiramatsu K. Blue emission from InGaN/GaN hexagonal pyramid structures[J]. Superlattices & Microstructures, 2007, 41(5): 341346.
[44] [44] Ko Y H, Kim J H, Jin L H, et al. Hybrid lightemitting diodes: electrically driven quantum dot/wire/well hybrid lightemitting diodes[J]. Advanced Materials, 2011, 23(45): 53315331.
[45] [45] Zhang X, Dapkus P D, Rich D H, et al. InGaN/GaN quantum well growth on pyramids of epitaxial lateral overgrown GaN[J]. Journal of Electronic Materials, 2000, 29(1): 1014.
[46] [46] Lee M L, Yeh Y H, Tu S J, et al. Dualwavelength GaNbased LEDs grown on truncated hexagonal pyramids formed by selectivearea regrowth on Siimplanted GaN templates[J]. Optics Express, 2013, 21(S5):A864A871.
[47] [47] Wachter C, Meyer A, Metzner S, et al. High wavelength tunability of InGaN quantum wells grown on semipolar GaN pyramid facets[J]. 2011, 248(3):605610.
[48] [48] Ko Y H, Kim J H, Gong S H, et al. Red emission of InGaN/GaN double heterostructures on GaN nanopyramid structures[J]. ACS Photonics, 2015, 2(4): 515520.
[49] [49] Wu Z, Chen P, Yang G, et al. Selective area epitaxy of semipolar InGaN/GaN multiple quantum wells on GaN microfacets using crossover stripe patterns[J]. Superlattices and Microstructures, 2015, 83: 2228.
[50] [50] Pereira S, Correia M R, Pereira E, et al. Compositional pulling effects in InxGa1-xN/GaN layers:a combined depthresolved cathodoluminescence and Rutherford backscattering/channeling study[J]. Phys Rev b, 2001, 64(20): 205311.
[51] [51] Wunderer T, Lipski F, Hertkorn J, et al. Fabrication of 3D InGaN/GaN structures providing semipolar GaN planes for efficient green light emission[J]. Physica Status Solidi (c), 2011, 6(s2): S490S493.
[52] [52] Wunderer T, Wang J, Lipski F, et al. Semipolar GaInN/GaN lightemitting diodes grown on honeycomb patterned substrates[J]. Physica Status Solidi (c), 2010, 7(78): 21402143.
[53] [53] Chen Y, Takeuchi T, Amano H, et al. Pit formation in GaInN quantum wells[J]. Applied Physics Letters, 1998, 72(6): 710712.
[54] [54] Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by Vshaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency[J]. Physical Review Letters, 2005, 95(12): 127402.
[55] [55] Wang X H, Jia H Q, Guo L W, et al. White lightemitting diodes based on a single InGaN emission layer[J]. Applied Physics Letters, 2007, 91(16): 4056.
[56] [56] Chang S P, Chang J R, Huang J K, et al. Fabrication and optical properties of green emission semipolar {10-11} InGaN/GaN MQWs selective grown on GaN nanopyramid arrays[J]. MRS Proceedings, 2011, 1324.
[57] [57] Cheng Y J, Chang S P, Lin D W, et al. Low efficiency droop green nanopyramid {1011} InGaN/GaN multiple quantum well LED[C]. CLEO: Applications and Technology. 2014.
[58] [58] Wang Y, Shimma R, Yamamoto T, et al. The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE[J]. Journal of Crystal Growth, 2015, 416: 164168.
[59] [59] So B M, Youn S B, Im I. Growth rate and composition of InGaN during InGaN/GaN quantum wells selective area metalorganic vapor phase epitaxy considering surface diffusion[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 17471751.
[60] [60] Tchoe Y, Jo J, Kim M, et al. Variablecolor lightemitting diodes using GaN microdonut arrays[J]. Advanced Materials, 2014, 26(19): 30193023.
[61] [61] Hong Y J, Lee C H, Yoon A, et al. Visiblecolortunable lightemitting diodes[J]. Advanced Materials, 2011, 23(29): 32843288.
[62] [62] Park I K, Kim J Y, Kwon M K, et al. Phosphorfree white lightemitting diode with laterally distributed multiple quantum wells[J]. Applied Physics Letters, 2008, 92(9): 091110.
[63] [63] Yang G F, Zhang Q, Wang J, et al. InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the applications for phosphorfree white lightemitting diodes[J]. Reviews in Physics, 2016, 1(C): 101119.
[64] [64] Guo J, Jin S. Design for white light source based on RGB LED illumination module[J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(1): 145150.
[65] [65] Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphorconverted white lightemitting diodes: recent advances in materials, techniques and properties[J]. Materials ence & Engineering R Reports, 2011, 71(1): 134.
[66] [66] Kim J S, Jeon P E, Park Y H, et al. Whitelight generation through ultravioletemitting diode and whiteemitting phosphor[J]. Applied Physics Letters, 2004, 85(17): 36963698.
[67] [67] Xie R J, Hirosaki N, Sakuma K, et al. Eu2+doped CaαSiAlON:a yellow phosphor for white lightemitting diodes[J]. Applied Physics Letters, 2004, 84(26): 54045406.
[68] [68] Yeh P C, Hwa M C, Yu J W, et al. Photonassisted tunneling in GaN nanowire white light emitting diodes[J]. Physica status solidi (c), 2009, 6(S2): S538S540.
[69] [69] Yang G, Chen P, Gao S, et al. Whitelight emission from InGaN/GaN quantum well microrings grown by selective area epitaxy[J]. Photonics Research, 2016, 4(1): 1720.
[70] [70] Funato M, Kondou T, Hayashi K, et al. Monolithic polychromatic lightemitting diodes based on InGaN microfacet quantum wells toward tailormade solidstate Lighting[J]. Applied Physics Express, 2008, 1(1): 011106.
[71] [71] Zhao J, Wei T, Zhang J, et al. Phosphorfree three dimensional hybrid white LED with high colorrendering index[J]. IEEE Photonics Journal, 2019, 11(3): 18.
Get Citation
Copy Citation Text
WANG Xun, WANG Lai, HAO Zhibiao, LUO Yi, SUN Changzheng, HAN Yanjun, XIONG Bing, WANG Jian, LI Hongtao. Growth and Device Application of GaN ThreeDimensional Structure[J]. Journal of Synthetic Crystals, 2020, 49(11): 1984
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email:
CSTR:32186.14.