Optics and Precision Engineering, Volume. 32, Issue 23, 3457(2024)
Aero-engine nacelle acoustic hole detection system integrating improved semi-supervised segmentation method
[1] NARK D M, JONES M G. An investigation of bifurcation acoustic treatment effects on aft-fan engine nacelle noise[C](2019).
[2] HOWERTON B M, JONES M G.
[3] MEI B, LIANG Z S, ZHU W D et al. Positioning variation synthesis for an automated drilling system in wing assembly[J]. Robotics and Computer-Integrated Manufacturing, 67, 102044(2021).
[4] MEI B, ZHU W D. Accurate positioning of a drilling and riveting cell for aircraft assembly[J]. Robotics and Computer-Integrated Manufacturing, 69, 102112(2021).
[5] HERNANDEZ A, MAGHAMI A, KHOSHDARREGI M. A machine vision framework for autonomous inspection of drilled holes in CFRP panels[C], 669-675(2020).
[6] GENG D X, LIU Y H, SHAO Z Y et al. Delamination formation, evaluation and suppression during drilling of composite laminates: a review[J]. Composite Structures, 216, 168-186(2019).
[7] CAGGIANO A, ANGELONE R, TETI R. Image analysis for CFRP drilled hole quality assessment[J]. Procedia CIRP, 62, 440-445(2017).
[8] ZHANG T H, MEI B, QIAO L et al. Detection method for composite hole guided by texture boundary[J]. Journal of Zhejiang University (Engineering Science), 54, 2294-2300(2020).
张太恒, 梅标, 乔磊. 纹理边界引导的复合材料圆孔检测方法[J]. 浙江大学学报(工学版), 54, 2294-2300(2020).
[9] LI C G, LEI Y C, YOU Z C et al. Vision-based defect measurement of drilled CFRP composites using double-light imaging[J]. IEEE Transactions on Instrumentation and Measurement, 72, 3514809(2023).
[10] MAGHAMI A, SALEHI M, KHOSHDARREGI M. Automated vision-based inspection of drilled CFRP composites using multi-light imaging and deep learning[J]. CIRP Journal of Manufacturing Science and Technology, 35, 441-453(2021).
[11] CHAPELLE O, SCHOLKOPF B, ZIEN E. Semi-supervised learning[J]. IEEE Transactions on Neural Networks, 20, 542(2009).
[12] 王晨, 罗文山, 陆鹏飞. 基于半监督学习-多通道卷积神经网络的加氢裂化产品性质预测[J]. 石油学报(石油加工), 39, 97-108(2023).
WANG CH, LUO W SH, LU P F et al. Prediction of hydrocracking product properties based on semi-supervised learning-multichannel convolutional neural network[J]. Acta Petrolei Sinica (Petroleum Processing Section), 39, 97-108(2023).
[13] ZHANG S, YE F, WANG B N et al. Semi-supervised bearing fault diagnosis and classification using variational autoencoder-based deep generative models[J]. IEEE Sensors Journal, 21, 6476-6486(2021).
[14] YANG SH. Research on Inspection Method of Composite Circular Hole Based on Deep Learning[D](2019).
杨爽. 基于深度学习的复合材料圆孔检测方法研究[D](2019).
[15] PELÁEZ-VEGAS A, MESEJO P, LUENGO J. A survey on semi-supervised semantic segmentation[webpage]. arXiv, 09899(2023).
[16] YANG L H, QI L, FENG L T et al. Revisiting weak-to-strong consistency in semi-supervised semantic segmentation[C], 7236-7246(2023).
[17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science(2014).
Get Citation
Copy Citation Text
Qingyu DONG, Biao MEI, Yun FU, Rongjin YANG, Weidong ZHU. Aero-engine nacelle acoustic hole detection system integrating improved semi-supervised segmentation method[J]. Optics and Precision Engineering, 2024, 32(23): 3457
Category:
Received: Jul. 1, 2024
Accepted: --
Published Online: Mar. 10, 2025
The Author Email: Biao MEI (mechme@126.com)