Chinese Journal of Lasers, Volume. 41, Issue 6, 605009(2014)
Relative Intensity Noise Characteristic of Broadband Sources and its Effect on Performance of Closed-Loop Fiber Optic Gyroscope
[1] [1] P R Morkel, R I Laming, D N Payne. Noise characteristics of high-power Er doped-fiber superluminescent sources[J]. Electron Lett, 1990, 26(2): 96-98.
[2] [2] A Yurek, H Taylor, L Goldberg, et al.. Quantum noise in superluminescent diodes[J]. J Quantum Electron,1986, 22(4): 522-527.
[3] [3] M Tur, E Shafir, K Blotekjaer. Source-induced noise in optical systems driven by low-coherence sources[J]. J Lightwave Technol, 1990, 8(2): 183-189.
[4] [4] W K Burns, R P Moeller, A Dandridge. Excess noise in fiber gyroscope sources[J]. IEEE Photon Technol Lett, 1990, 2(8): 606-608.
[5] [5] Haipeng Yu, Wenyuan Xu, Chunxi Zhang. Relative intensity noise reduction in superfluorescent fiber source based on semiphysical simulation[C]. ICEOE, 2011. 399-402.
[6] [6] Jian Mi, Chunxi Zhang, Zheng Li, et al.. Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope[J]. Chin Opt Lett, 2006, 4(7): 379-381.
[7] [7] R C Rabelo, R T de Carvalho, J Blake. SNR enhancement of intensity noise-limited FOGs[J]. J Lightwave Technol, 2000, 18(12): 2146-2150.
[8] [8] Herve Lefevre. The Fiber-Optic Gyroscope[M]. Boston London: Artech House, 1993. 21-23.
[9] [9] Zhang Guicai. The Principles and Technologies of Fiber-Optic Gyroscope[M]. Beijing: National Defense Industry Press, 2007. 179-208.
[10] [10] Yonggang Zhang, Honggang Chen, Tao Li, et al.. Pre-estimate relative intensity noise subtraction performance of FOG by using signal cross correlation[C]. International Conference on Information and Automation, 2011. 768-771.
[11] [11] R P Moeller, W K Burns, N J Frigo. Open-loop output and scale factor stability in a fiber-optic gyroscope[J]. J Lightwave Technol, 1989, 7(2): 262-269.
[12] [12] Xiyi Huang, Naveen Sarma, Kevin Mark Killian, et al.. Optical Signal Noise Reduction for Fiber Optical Gyroscopes[P]. U S Patent: 5898496, 1999.
[13] [13] Sunghwan Shin, Utkarsh Sharma, Haohua Tu, et al.. Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography[J]. IEEE Photon Technol Lett, 2010, 22(14): 1057-1059.
[14] [14] Sunghwan Shin. Characterization and Comparison of Optical Source Relative Intensity Noise and Effects in Optical Coherence Tomography[D]. Illinois: College of the University of Illinois, 2010. 21-26.
[15] [15] D Baney, W Sorin. Broadband frequency characterization of optical receivers using intensity noise[J]. Hewlett-Packard J, 1995, 46(1): 6-12.
[16] [16] AQ6370 Optical Spectrum Analyzer User′s Manual[S]. Japan: Yokogawa Electric Corporation, 2006. App-7.
[17] [17] Shen Tong. Research on Key Technology of Superflourcent Fiber Source for Engineering Application[D]. Beijing: Beihang University, 2008. 10-12.
[18] [18] Wang Wei. The Technologies of Interferential Fiber-Optic Gyroscope[M]. Beijing: China Aerospace Press, 2010. 62-63.
Get Citation
Copy Citation Text
Suo Xinxin, Yang Yuanhong, Yang Mingwei, Ma Haiquan, Zhang Bin. Relative Intensity Noise Characteristic of Broadband Sources and its Effect on Performance of Closed-Loop Fiber Optic Gyroscope[J]. Chinese Journal of Lasers, 2014, 41(6): 605009
Category: Optical communication
Received: Dec. 19, 2013
Accepted: --
Published Online: Apr. 16, 2014
The Author Email: Xinxin Suo (suoxinxin111111@163.com)