Laser Journal, Volume. 45, Issue 11, 156(2024)
Photonic crystal fiber design with low flat dispersion, large mode field area, and support for 118 OAM modes
[2] [2] Saridis G M, Alexandropoulos D, Zervas G, et al. Survey and evaluation of space division multiplexing: From technologies to optical networks [J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2136-2156.
[3] [3] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548.
[4] [4] Lian Y, Yu Y, Han S, et al. OAM beams generation technology in optical fiber: A review [J]. IEEE Sensors Journal, 2022, 22(5): 3828-3843.
[5] [5] Bai X, Chen H, Yang H. Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission [J]. Optik, 2018, 158: 1266-1274.
[6] [6] Puttnam B J, Rademacher G, Lus R S. Space-division multiplexing for optical fiber communications [J]. Optica, 2021, 8(9): 1186-1203.
[7] [7] Ma M, Lian Y, Wang Y, et al. Generation, transmission and application of orbital angular momentum in optical fiber: A review [J]. Frontiers in Physics, 2021, 9: 703.
[8] [8] Jiang Y, Ren G, Shen Y, et al. Two-dimensional tunable orbital angular momentum generation using a vortex fiber [J]. Optics Letters, 2017, 42(23): 5014-5017.
[9] [9] Kabir M A, Hassan M M, Hossain M N, et al. Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission [J]. Optics Communications, 2020, 467: 125731.
[10] [10] Yue Y, Yan Y, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber [J]. IEEE Photonics Journal, 2012, 4(2): 535-543.
[11] [11] Fu H, Zhu M, Liu C, et al. Photonic crystal fiber supporting 394 orbital angular momentum modes with flat dispersion, low nonlinear coefficient, and high mode quality [J]. Optical Engineering, 2022, 61(2): 026111-026111.
[12] [12] Wan X, Wang Z, Sun B, et al. Low dispersion and confinement loss photonic crystal fiber for orbital angular momentum mode transmission [J]. Optical and Quantum Electronics, 2020, 52: 1-15.
[13] [13] Hassan M M, Abdulrazak L F, Alharbi A G, et al. Novel approach of anti-resonant fiber with supporting 64 orbital angular momentum modes for optical communication [J]. Alexandria Engineering Journal, 2022, 61 (12): 9891-9900.
[14] [14] Ma Q, Luo A, Hong W. Numerical study of photonic crystal fiber supporting 180 orbital angular momentum modes with high mode quality and flat dispersion [J]. Journal of Lightwave Technology, 2021, 39(9): 2971-2979.
[15] [15] Zhao L, Zhao H, Xu Z, et al. A design of novel photonic crystal fiber with low and flattened dispersion for supporting 84 orbital angular momentum modes [J]. Communications in Theoretical Physics, 2021, 73(8): 085501.
[16] [16] Sun Y, Lu W, Liu Q, et al. A large effective mode area photonic crystal fiber supporting 134 OAM modes [J]. Journal of Optics, 2023: 1-10.
[17] [17] Rjeb A, Fathallah H, Chebaane S, et al. Design of novel circular lattice photonic crystal fiber suitable for transporting 48 OAM modes [J]. Optoelectronics Letters, 2021, 17: 501-506.
Get Citation
Copy Citation Text
YAN Yupeng, SONG Xice, GUAN Lizhen, WANG Yuhang, PU Junyu, SUN Hongsen, LI Changjiang, LIU Kai, YU Xianlun. Photonic crystal fiber design with low flat dispersion, large mode field area, and support for 118 OAM modes[J]. Laser Journal, 2024, 45(11): 156
Category:
Received: Dec. 22, 2023
Accepted: Jan. 17, 2025
Published Online: Jan. 17, 2025
The Author Email: YU Xianlun (839811547@qq.com)