Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1354(2025)

Review on Performance and Characterization of Abrasion-Resistant Concrete Materials

ZHAO Mingyu1...2, ZHU Baoshuang1, WANG Qing1, ZHANG Gaozhan3, YANG Jun3 and DING Qingjun2 |Show fewer author(s)
Author Affiliations
  • 1School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • 2State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 3School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
  • show less
    References(69)

    [1] [1] WANG L, ZHOU S H, SHI Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Compos Part B Eng, 2017, 130: 28-37.

    [2] [2] WANG Q H, LIU R X, LIU P Y, et al. Effects of silica fume on the abrasion resistance of low-heat Portland cement concrete[J]. Constr Build Mater, 2022, 329: 127165.

    [4] [4] RAHMANI K, PIROTI S, GHAMEIAN M. Analysis of the effect of kevlar fibers on abrasion resistance, flexural strength and hydraulic conductivity coefficient of silica fume concretes[J]. Iran J Sci Technol Trans Civ Eng, 2020, 44(2): 669-674.

    [5] [5] YAO Q, QI S C, WU F M, et al. Abrasion-resistant and temperature control of lining concrete for large-sized spillway tunnels[J]. Appl Sci, 2020, 10(21): 7614.

    [6] [6] YEN T, HSU T H, LIU Y W, et al. Influence of class F fly ash on the abrasion-erosion resistance of high-strength concrete[J]. Constr Build Mater, 2007, 21(2): 458-463.

    [8] [8] WANG L, JIN M M, GUO F X, et al. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete[J]. Fractals, 2021, 29(2): 2140003.

    [9] [9] CAI X H, HE Z, TANG S W, et al. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test[J]. Constr Build Mater, 2016, 127: 804-814.

    [10] [10] RAMESH KUMAR G B, SHARMA U K. Abrasion resistance of concrete containing marginal aggregates[J]. Constr Build Mater, 2014, 66: 712-722.

    [11] [11] CHEN X R, HE Z, CAI X H, et al. Abrasion resistance of cement paste with granulated blast furnace slag and its relations to microhardness and microstructure[J]. J Wuhan Univ Technol Mater Sci Ed, 2022, 37(3): 410-415.

    [12] [12] HORSZCZARUK E, BRZOZOWSKI P. Effects of fluidal fly ash on abrasion resistance of underwater repair concrete[J]. Wear, 2017, 376: 15-21.

    [13] [13] JIANG C M, JIANG L H, CHEN C, et al. Evaluation and prediction on the hydraulic abrasion performance of high belite cement-based concrete[J]. KSCE J Civ Eng, 2021, 25(6): 2175-2185.

    [14] [14] OJHA P N, TRIVEDI A, et al. High performance fiber reinforced concrete-for repair in spillways of concrete dams[J]. Res Eng Struct Mater, 2021, 7(4): 505-522.

    [15] [15] QIN Q L, MENG Q S, YANG H M, et al. Study of the anti-abrasion performance and mechanism of coral reef sand concrete[J]. Constr Build Mater, 2021, 291: 123263.

    [16] [16] ABID S R, SHAMKHI M S, MAHDI N S, et al. Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers[J]. Constr Build Mater, 2018, 187: 168-177.

    [17] [17] CHENG T C, CHENG A, HUANG R, et al. Abrasion properties of steel fiber reinforced silica fume concrete according to los angeles and water abrasion tests[J]. Mater Sci, 2014, 20(4): 498-502.

    [18] [18] WU F, YU Q L, CHEN X Q. Effects of steel fibre type and dosage on abrasion resistance of concrete against debris flow[J]. Cem Concr Compos, 2022, 134: 104776.

    [19] [19] WANG L, ZENG X M, LI Y, et al. Influences of MgO and PVA fiber on the abrasion and cracking resistance, pore structure and fractal features of hydraulic concrete[J]. Fractal Fract, 2022, 6(11): 674.

    [20] [20] BAI Y, CAI Y, LI J. Effect of rubber particles on properties of abrasion resistant concrete[C]. 2021 7th Int Conf Hydraul Civ Eng & Smart Water Conserv Intell Disaster Reduct Forum ICHCE & SWIDR, 2021.

    [21] [21] FENG L Y, CHEN A J, LIU H D. Effect of waste tire rubber particles on concrete abrasion resistance under high-speed water flow[J]. Int J Concr Struct Mater, 2021, 15(1): 37.

    [22] [22] KANG J F, ZHANG B, LI G Y. The abrasion-resistance investigation of rubberized concrete[J]. J Wuhan Univ Technol Mater Sci Ed, 2012, 27(6): 1144-1148.

    [23] [23] GONG J W, QIN C, TANG X J, et al. Experimental study and field application of abrasion resistance for the repair of concrete water-conveying structures[J]. Mater Struct, 2022, 55(7): 167.

    [24] [24] OMODING N, CUNNINGHAM L S, LANE-SERFF G F. Effect of using recycled waste glass coarse aggregates on the hydrodynamic abrasion resistance of concrete[J]. Constr Build Mater, 2021, 268: 121177.

    [25] [25] OMODING N, CUNNINGHAM L S, LANE-SERFF G F. Influence of coarse aggregate parameters and mechanical properties on the abrasion resistance of concrete in hydraulic structures[J]. J Mater Civ Eng, 2021, 33(9): 04021244.

    [26] [26] TAN L X, YANG J, LI C X, et al. Effect of polyoxymethylene fiber on the mechanical properties and abrasion resistance of ultra-high- performance concrete[J]. Materials, 2023, 16(21): 7014.

    [27] [27] LI J H, WANG X P, CHEN D D, et al. Design and application of UHPC with high abrasion resistance[J]. Constr Build Mater, 2021, 309: 125141.

    [29] [29] LI S X, TANG L, SHI W Y, et al. Experimental investigation on hydroabrasive erosion of steel fiber UHPC and rubber UHPC[J]. Adv Mater Sci Eng, 2020, 2020(1): 5920824.

    [30] [30] RAJPUT B L, PIMPLIKAR S S. Abrasion and impact resistance of concrete produced with nano-silica[J]. Mater Today Proc, 2022, 59: 115-119.

    [31] [31] RAHMANI K, RAHMANZADEH B, PIROTI S. Experimental study of the effect of water-cement ratio on compressive strength, abrasion resistance, porosity and permeability of nano silica concrete[J]. Frat Ed Integrit Strutturale, 2018, 12(44): 16-24.

    [32] [32] HE Z, CHEN X R, CAI X H. Influence and mechanism of micro/nano-mineral admixtures on the abrasion resistance of concrete[J]. Constr Build Mater, 2019, 197: 91-98.

    [34] [34] IMAN M, SHAHHEIDARI F S, ALI HASHEMI S M, et al. Investigation of steel fiber effects on concrete abrasion resistance[J]. Adv Concr Constr, 2020, 9(4): 367-374.

    [35] [35] N S AYOOB, S R A A N H Y H D. Water-impact abrasion of self-compacting concrete [J]. Mag Civ Eng, 2020, (96): 60-69.

    [36] [36] ABID S R, HILO A N, AYOOB N S, et al. Underwater abrasion of steel fiber-reinforced self-compacting concrete[J]. Case Stud Constr Mater, 2019, 11: e00299.

    [37] [37] HORSZCZARUK E. Abrasion resistance of high-strength concrete in hydraulic structures[J]. Wear, 2005, 259(1-6): 62-69.

    [38] [38] HORSZCZARUK E K. Hydro-abrasive erosion of high performance fiber-reinforced concrete[J]. Wear, 2009, 267(1-4): 110-115.

    [39] [39] ABID S R, HILO A N, DAEK Y H. Experimental tests on the underwater abrasion of engineered cementitious composites[J]. Constr Build Mater, 2018, 171: 779-792.

    [40] [40] ZARRABI N, MOGHIM M N, EFTEKHAR M R. Effect of hydraulic parameters on abrasion erosion of fiber reinforced concrete in hydraulic structures[J]. Constr Build Mater, 2021, 267: 120966.

    [41] [41] YAO D, LI J Z, XIAO H G, et al. Research on the surface abrasion resistance performance of basalt fiber reinforced concrete[J]. J Build Eng, 2024, 88: 109125.

    [42] [42] DANDAPAT R, DEB A. A probability based model for the erosive wear of concrete by sediment bearing water[J]. Wear, 2016, 350: 166-181.

    [43] [43] SABARINATHAN P, ANNAMALAI V E, SANGEETHA P. Mechanical and abrasion resistance properties of concrete containing recycled abrasive waste as partial replacement of fine aggregate[J]. Arab J Sci Eng, 2021, 46(11): 10943-10952.

    [46] [46] LI J H, YU Z, XU F, et al. The influence of curing system on the macroscopic performance and microstructure of anti-abrasive UHPC[J]. Coatings, 2024, 14(1): 45.

    [47] [47] MOHSIN Z H, HILO A N, AL-GASHAM T S, et al. Experimental study on the depth of abrasion in hydraulic structures using samples of geopolymer concrete[J]. Mater Today Proc, 2022, 56: 1964-1971.

    [48] [48] CHEYAD S M, HILO A N, AL-GASHAM T S. Comparing the abrasion resistance of conventional concrete and geopolymer samples[J]. Mater Today Proc, 2022, 56: 1832-1839.

    [49] [49] RAMUJEE K, POTHARAJU M. Abrasion resistance of geopolymer composites[J]. Procedia Mater Sci, 2014, 6: 1961-1966.

    [50] [50] WITZKE F B, BELTRAME N A M, ANGULSKI DA LUZ C, et al. Abrasion resistance of metakaolin-based geopolymers through accelerated testing and natural wear[J]. Wear, 2023, 530: 204996.

    [51] [51] ABDULHASSAN N A, HILO A N, ABID S R, et al. Underwater surface abrasion of conventional and geopolymer concrete using the ASTM C1138 approach[J]. J Mater Res Technol, 2023, 25: 2556-2569.

    [52] [52] MOHEBI R, BEHFARNIA K, SHOJAEI M. Abrasion resistance of alkali-activated slag concrete designed by Taguchi method[J]. Constr Build Mater, 2015, 98: 792-798.

    [53] [53] LI J, BAI Y, CAI Y B, et al. Evaluation of concrete abrasion using traditional and high-speed underwater methods[J]. J Mater Civ Eng, 2023, 35(4): 0004693.

    [54] [54] XU L Q, ZHANG K, LIU Y H. Hydraulic abrasion-resistant elastic epoxy resin materials[J]. Adv Mater Sci Eng, 2019, 2019: 9358139.

    [55] [55] LIU Y W, CHO S W, HSU T H. Impact abrasion of hydraulic structures concrete[J]. J Mar Sci Technol, 2012, 20(3): 253-258.

    [58] [58] ASTM C1138, Standard Test Method for Abrasion Resistance of Concrete(underwater method), ASTM International, West Conshohocken(PA)[S]. 2019.

    [59] [59] OMODING N, CUNNINGHAM L S, LANE-SERFF G F. Influence of basalt micro-fibres on the abrasion resistance of concrete in hydraulic structures[J]. Mater Struct, 2021, 54(2): 65.

    [60] [60] ALANSARI M S. Analysis of abrasion depth and rates in concrete[J]. Mod Appl Sci, 2021, 15(6): 1.

    [61] [61] AYOOB N S, ABID S R. Analysis of abrasion rates in concrete surfaces of hydraulic structures[J]. IOP Conf Ser: Mater Sci Eng, 2020, 888(1): 012052.

    [62] [62] ABID S R, ALI S H, MURALI G, et al. A simple suggested approach to reduce the testing time of concrete surface abrasion using ASTM C1138[J]. Case Stud Constr Mater, 2021, 15: e00685.

    [65] [65] Standard Test Method for Abrasion Resistance of Concrete by Sandblasting: ASTM C418-12[S]. ASTM International, 2012.

    [68] [68] LIU Y W, YEN T, HSU T H. Abrasion erosion of concrete by water-borne sand[J]. Cem Concr Res, 2006, 36(10): 1814-1820.

    [69] [69] HASAN M S, LI S S, ZSAKI A M, et al. Measurement of abrasion on concrete surfaces with 3D scanning technology[J]. J Mater Civ Eng, 2019, 31(10): 04019207.

    [70] [70] LIU Q, LI L, ANDERSEN L V, et al. Studying the abrasion damage of concrete for hydraulic structures under various flow conditions[J]. Cem Concr Compos, 2023, 135: 104849.

    [71] [71] GRDIC Z J, CURCIC G A T, RISTIC N S, et al. Abrasion resistance of concrete micro-reinforced with polypropylene fibers[J]. Constr Build Mater, 2012, 27(1): 305-312.

    [72] [72] ISMAEIL R H, HILO A N, AL-GASHAM T S, et al. Experimental study on erosion depth in hydraulic structures[J]. Mater Today Proc, 2021, 42: 2340-2345.

    [73] [73] WITZKE F B, BELTRAME N A M, ANGULSKI DA LUZ C, et al. Abrasive wear of concrete measured by different accelerated tests and natural exposure[J]. Wear, 2023, 520: 204655.

    [74] [74] WU F, CHEN X Q, CHEN J G. Abrasion resistance enhancement of concrete using surface treatment methods[J]. Tribol Int, 2023, 179: 108180.

    [75] [75] WU F, CHEN X Q, CHEN J G. Abrasion resistance of concrete under coupled debris flow and freeze-thaw cycles[J]. Wear, 2023, 524: 204805.

    [76] [76] WANG X, HU Y A, LI Z H. Experimental study on the mechanism of the combined action of cavitation erosion and abrasion at high speed flow[J]. Int J Concr Struct Mater, 2019, 13(1): 58.

    [77] [77] ISLAM M S, MONDAL B C, ISLAM M M. Effect of sea salts on structural concrete in a tidal environment[J]. Aust J Struct Eng, 2010, 10(3): 237-252.

    [78] [78] LIU Y W. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume[J]. Constr Build Mater, 2007, 21(5): 972-977.

    [79] [79] GUO J J, GAO M H, WANG K, et al. Mechanisms and influential variables on the abrasion resistance hydraulic concrete[J]. Nanotechnol Rev, 2022, 11(1): 2997-3019.

    [80] [80] GOU W J, HU Y, ZHANG H. Cavitation erosion in suspensions containing sediment and NaCl for cement paste and mortar[J]. Wear, 2024, 544: 205284.

    [81] [81] ZHU X Y, BAI Y, CHEN X D, et al. Evaluation and prediction on abrasion resistance of hydraulic concrete after exposure to different freeze-thaw cycles[J]. Constr Build Mater, 2022, 316: 126055.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Mingyu, ZHU Baoshuang, WANG Qing, ZHANG Gaozhan, YANG Jun, DING Qingjun. Review on Performance and Characterization of Abrasion-Resistant Concrete Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1354

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 30, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240686

    Topics