Acta Optica Sinica, Volume. 40, Issue 7, 0720001(2020)

Particle Image Velocimetry Based on a Lightweight Deep Learning Model

Changdong Yu1、**, Xiaojun Bi2、*, Yang Han3, Haiyun Li1, and Yunfei Gui3
Author Affiliations
  • 1College of Information and Communication Engineering, Harbin Engineering University,Harbin, Heilongjiang 150001, China
  • 2College of Information and Engineering, Minzu University of China, Beijing 100081, China
  • 3College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    Figures & Tables(11)
    Structure of the LiteFlowNet
    Improved NetE structure
    Depth separable convolution
    Velocity fields and vorticity maps of DNS turbulent flow estimated by different models
    RMSE estimated by different models for turbulent image
    Histogram comparison of velocity distributions estimated by different models
    Number of parameters for different models
    • Table 1. Improved NetC network structure parameters

      View table

      Table 1. Improved NetC network structure parameters

      Layer nameKernelStrideRepeat timesOutput resolution
      conv132132, 256, 256
      conv2_132132, 128, 128
      conv2_231132, 128, 128
      conv2_331132, 128, 128
      conv3_1/dw32132, 64, 64
      conv3_1/sep12164, 64, 64
      conv3_2/dw31164, 64, 64
      conv3_2/sep11164, 64, 64
      conv4_1/dw32164, 32, 32
      conv4_1/sep12196, 32, 32
      conv4_2/dw32196, 32, 32
      conv4_2/sep12196, 32, 32
      conv5/dw32196, 16, 16
      conv5/sep121128, 16, 16
    • Table 2. Types of motion fields included in the PIV dataset

      View table

      Table 2. Types of motion fields included in the PIV dataset

      Case nameDescriptionQuantity
      UniformUniform flow1000
      Back-stepBackward stepping flow3200
      CylinderVortex shedding flow over a circular cylinder2050
      DNS-turbulenceAhomogeneous and isotropic turbulence flow2000
      SQGSeasurface flow driven by a Surface Quasi-Geostrophic model1500
      JHTDB-channelChannel flow provided by Johns Hopkins Turbulence Databases1600
      JHTIDB-mhd1024Forced MHD turbulence provided by JHTIDB800
      JHTIDB-isotropic1024Forced isotropic turbulence provided by JHTIDB2000
    • Table 3. Test errors on DNS

      View table

      Table 3. Test errors on DNS

      ModelRMSE
      TrainTest
      LiteFlowNet0.22500.2300
      LiteFlowNet-en0.07100.0730
      LiteFlowNet-HD0.06800.0682
    • Table 4. Computation time of different models

      View table

      Table 4. Computation time of different models

      ModelTime /msNumber of vectors
      LiteFlowNet24.74256×256
      LiteFlowNet-en46.54256×256
      LiteFlowNet-HD41.98256×256
    Tools

    Get Citation

    Copy Citation Text

    Changdong Yu, Xiaojun Bi, Yang Han, Haiyun Li, Yunfei Gui. Particle Image Velocimetry Based on a Lightweight Deep Learning Model[J]. Acta Optica Sinica, 2020, 40(7): 0720001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Nov. 14, 2019

    Accepted: Dec. 26, 2019

    Published Online: Apr. 15, 2020

    The Author Email: Yu Changdong (heu_yuchangdong@163.com), Bi Xiaojun (bixiaojun@hrbeu.edu.cn)

    DOI:10.3788/AOS202040.0720001

    Topics