Acta Optica Sinica, Volume. 43, Issue 8, 0822013(2023)

Advances in Measurement and Error Evaluation Technique of Optical Freeform Surfaces

Shixiang Wang, Lingbao Kong*, and Lü Haoyu
Author Affiliations
  • Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200438, China
  • show less
    References(169)

    [1] Oh C J, Lowman A E, Smith G A et al. Fabrication and testing of 4.2 m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope[J]. Proceedings of SPIE, 9912, 210-221(2016).

    [2] Zhu J, Yang T, Jin G F. Design method of surface contour for a freeform lens with wide linear field-of-view[J]. Optics Express, 21, 26080-26092(2013).

    [3] Yabe A. Representation of freeform surfaces suitable for optimization[J]. Applied Optics, 51, 3054-3058(2012).

    [4] Tan N Y J, Zhang X, Neo D W K et al. A review of recent advances in fabrication of optical Fresnel lenses[J]. Journal of Manufacturing Processes, 71, 113-133(2021).

    [5] Wei L D, Li Y C, Jing J J et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface[J]. Optics Express, 26, 8550-8565(2018).

    [6] Li L, Yang G, Lee W B et al. Carbide-bonded graphene-based Joule heating for embossing fine microstructures on optical glass[J]. Applied Surface Science, 500, 144004(2020).

    [7] Wang C J, Cheung C F, Liu M Y et al. Fluid jet-array parallel machining of optical microstructure array surfaces[J]. Optics Express, 25, 22710-22725(2017).

    [8] Huang R, Zhang X Q, Rahman M et al. Ultra-precision machining of radial Fresnel lens on roller moulds[J]. CIRP Annals, 64, 121-124(2015).

    [9] Sun Z W, To S, Wang S J et al. Development of self-tuned diamond milling system for fabricating infrared micro-optics arrays with enhanced surface uniformity and machining efficiency[J]. Optics Express, 28, 2221-2237(2020).

    [10] Plummer W T. Free-form optical components in some early commercial products[J]. Proceedings of SPIE, 5865, 586509(2005).

    [11] Wang S. Fiducial-aided calibration and positioning system for precision manufacturing of freeform surfaces[D](2019).

    [12] Feng Z X, Cheng D W, Wang Y T. Iterative freeform lens design for optical field control[J]. Photonics Research, 9, 1775-1783(2021).

    [13] Lin R H, Alnakhli Z, Li X H. Engineering of multiple bound states in the continuum by latent representation of freeform structures[J]. Photonics Research, 9, B96-B103(2021).

    [14] Yang T, Zhu J, Wu X F et al. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method[J]. Optics Express, 23, 10233-10246(2015).

    [15] Fuerschbach K, Davis G E, Thompson K P et al. Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors[J]. Optics Letters, 39, 2896-2899(2014).

    [16] Wang Q F, Cheng D W, Wang Y T et al. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements[J]. Applied Optics, 52, C88-C99(2013).

    [17] Kumar S, Tong Z, Jiang X Q. Advances in the design and manufacturing of novel freeform optics[J]. International Journal of Extreme Manufacturing, 4, 032004(2022).

    [18] Whitehouse D[M]. Handbook of surface and nanometrology(2011).

    [21] Savio E, de Chiffre L, Schmitt R. Metrology of freeform shaped parts[J]. CIRP Annals, 56, 810-835(2007).

    [23] Fang F Z, Zhang X D, Weckenmann A et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 62, 823-846(2013).

    [24] Claverley J D, Leach R K. Development of a three-dimensional vibrating tactile probe for miniature CMMs[J]. Precision Engineering, 37, 491-499(2013).

    [25] Manske E, Fröhlich T, Füßl R et al. Progress of nanopositioning and nanomeasuring machines for cross-scale measurement with sub-nanometre precision[J]. Measurement Science and Technology, 31, 085005(2020).

    [26] Manske E, Jäger G, Hausotte T et al. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Measurement Science and Technology, 23, 074001(2012).

    [27] Widdershoven I, Donker R L, Spaan H M. Realization and calibration of the “isara 400” ultra-precision CMM[J]. Journal of Physics: Conference Series, 311, 012002(2011).

    [29] Jäger G, Manske E, Hausotte T et al. Nanopositioning and nanomeasuring machine NPMM-200: a new powerful tool for large-range micro- and nanotechnology[J]. Surface Topography: Metrology and Properties, 4, 034004(2016).

    [30] Peggs G N, Lewis A J, Oldfield S. Design for a compact high-accuracy CMM[J]. CIRP Annals-Manufacturing Technology, 48, 417-420(1999).

    [31] Weckenmann A, Schuler A. Application of modern high resolution tactile sensors for micro-objects[J]. International Journal of Precision Technology, 2, 266-288(2011).

    [32] Haitjema H, Pril W, Schellekens P. Development of a silicon-based nanoprobe system for 3-D measurements[J]. CIRP Annals, 50, 365-368(2001).

    [33] Chi C, Sun X G, Xue N et al. Recent progress in technologies for tactile sensors[J]. Sensors, 18, 948(2018).

    [34] Yang T, Xie D, Li Z et al. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance[J]. Materials Science and Engineering: R: Reports, 115, 1-37(2017).

    [35] Werner K. XENOS-the new standard[J]. Advanced Technologies in Mechanics, 1, 28-31(2014).

    [36] Barhoum A, Luisa García-Betancourt M. Physicochemical characterization of nanomaterials: size, morphology, optical, magnetic, and electrical properties[M]. Emerging applications of nanoparticles and architecture nanostructures, 279-304(2018).

    [38] Stover E, Berger G, Wendel M et al. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors[J]. Proceedings of SPIE, 9633, 96331O(2015).

    [39] Henselmans R, Cacace L, Kramer G et al. The NANOMEFOS non-contact measurement machine for freeform optics[J]. Precision Engineering, 35, 607-624(2011).

    [40] Anderson D S, Burge J H. Swing-arm profilometry of aspherics[J]. Proceedings of SPIE, 2536, 169-179(1995).

    [41] Chen C C A, Li J C, Liao W C et al. Dynamic pad surface metrology monitoring by swing-arm chromatic confocal system[J]. Applied Sciences, 11, 179(2020).

    [42] Michal S, Horvath P, Hrabovsky M et al. Swing arm profilometer as a tool for measuring the shape of large optical surfaces[J]. Optik, 264, 169419(2022).

    [43] Dörband B, Seitz G. Interferometric testing of optical surfaces at its current limit[J]. Optik, 112, 392-398(2001).

    [44] Wyant J C. Dynamic interferometry[J]. Optics and Photonics News, 14, 36-41(2003).

    [45] Gan Z H, Peng X Q, Chen S Y et al. Fringe discretization and manufacturing analysis of a computer-generated hologram in a null test of the freeform surface[J]. Applied Optics, 57, 9913-9921(2018).

    [46] MacGovern A J, Wyant J C. Computer generated holograms for testing optical elements[J]. Applied Optics, 10, 619-624(1971).

    [47] Chen S Y, Xue S, Zhai D D et al. Measurement of freeform optical surfaces: trade-off between accuracy and dynamic range[J]. Laser & Photonics Reviews, 14, 1900365(2020).

    [48] Zhang X, Hu H, Xue D et al. Wavefront optical spacing of freeform surfaces and its measurement using CGH interferometry[J]. Optics and Lasers in Engineering, 161, 107350(2023).

    [49] Beier M, Scheiding S, Gebhardt A et al. Figure correction of freeform mirrors with well-defined reference structures by MRF[C], 52-57(2014).

    [50] Zhu D Y, Zhang X J. Design of high-precision phase computer-generated-hologram[J]. Acta Optica Sinica, 35, 0712002(2015).

    [51] Zhu R H, Sun Y, Shen H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 41, 0112001(2021).

    [52] Millerd J, Brock N, Hayes J et al. Pixelated phase-mask dynamic interferometers[M]. Osten W. Fringe 2005, 640-647(2006).

    [53] Malacara D[M]. Optical shop testing(2007).

    [54] Supranowitz C, Lormeau J P, Maloney C et al. Freeform metrology using subaperture stitching interferometry[J]. Proceedings of SPIE, 10151, 101510D(2016).

    [55] Murphy P, Fleig J, Forbes G et al. Subaperture stitching interferometry for testing mild aspheres[J]. Proceedings of SPIE, 6293, 62930J(2006).

    [56] Hyun S, Je S, Kim G H. High precision interferometric measurement of freeform surfaces from the well-defined sub-aperture surface profiles[J]. Proceedings of SPIE, 11175, 111752B(2019).

    [57] Küchel M F. Interferometric measurement of rotationally symmetric aspheric surfaces[J]. Proceedings of SPIE, 7389, 738916(2009).

    [58] Zhang L, Liu D, Shi T et al. Aspheric subaperture stitching based on system modeling[J]. Optics Express, 23, 19176-19188(2015).

    [60] Chen S Y, Dai Y F, Li S Y et al. Calculation of subaperture aspheric departure in lattice design for subaperture stitching interferometry[J]. Optical Engineering, 49, 023601(2010).

    [61] Murphy P E, Supranowitz C. Freeform testability considerations for subaperture stitching interferometry[J]. Proceedings of SPIE, 11175, 111750Z(2019).

    [62] Chen S, Xue S, Wang G et al. Subaperture stitching algorithms: a comparison[J]. Optics Communications, 390, 61-71(2017).

    [63] Zhang L, Liu D, Shi T et al. Optical free-form surfaces testing technologies[J]. Chinese Optics, 10, 283-299(2017).

    [64] Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 33, 2973-2975(2008).

    [65] Baer G, Schindler J, Pruss C et al. Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces[J]. Optics Express, 22, 31200-31211(2014).

    [66] Gao J, Shen H, Li J et al. A flexible angle compensation method for freeform surface testing based on tip/tilt mirror[J]. Optics Communications, 444, 21-27(2019).

    [67] Du H, Song C, Li S Y et al. Optimization technique for rolled edge control process based on the acentric tool influence functions[J]. Applied Optics, 56, 4330-4337(2017).

    [68] Cheng D W, Chen H L, Yang T et al. Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics[J]. Chinese Optics Letters, 19, 112202(2021).

    [69] Pruss C, Tiziani H. Dynamic null lens for aspheric testing using a membrane mirror[J]. Optics Communications, 233, 15-19(2004).

    [70] Fuerschbach K, Thompson K P, Rolland J P. Interferometric measurement of a concave, φ‑polynomial, Zernike mirror[J]. Optics Letters, 39, 18-21(2014).

    [71] Huang L, Choi H, Zhao W C et al. Adaptive interferometric null testing for unknown freeform optics metrology[J]. Optics Letters, 41, 5539-5542(2016).

    [72] Xue S, Chen S Y, Fan Z B et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 26, 21910-21928(2018).

    [73] Cao Z L, Xuan L, Hu L F et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Optics Express, 13, 1059-1065(2005).

    [74] Xue S, Chen S Y, Tie G P et al. Adaptive null interferometric test using spatial light modulator for free-form surfaces[J]. Optics Express, 27, 8414-8428(2019).

    [75] Xue S, Deng W X, Chen S Y. Intelligence enhancement of the adaptive wavefront interferometer[J]. Optics Express, 27, 11084-11102(2019).

    [76] Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces[J]. Proceedings of SPIE, 5457, 366-376(2004).

    [77] Huang L, Idir M, Zuo C et al. Review of phase measuring deflectometry[J]. Optics and Lasers in Engineering, 107, 247-257(2018).

    [78] Xiao Y L, Li S, Zhang Q et al. Optical fringe-reflection deflectometry with bundle adjustment[J]. Optics and Lasers in Engineering, 105, 132-140(2018).

    [79] Li M Y, Li D H, Jin C Y et al. Improved zonal integration method for high accurate surface reconstruction in quantitative deflectometry[J]. Applied Optics, 56, F144-F151(2017).

    [80] Liu Y, Huang S J, Zhang Z H et al. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry[J]. Scientific Reports, 7, 10293(2017).

    [81] Li W S, Sandner M, Gesierich A et al. Absolute optical surface measurement with deflectometry[J]. Proceedings of SPIE, 8494, 84940G(2012).

    [82] Su P, Parks R E, Wang L R et al. Software configurable optical test system: a computerized reverse Hartmann test[J]. Applied Optics, 49, 4404-4412(2010).

    [83] Huang R, Su P, Horne T et al. Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System)[J]. Proceedings of SPIE, 8838, 883807(2013).

    [84] Su P, Wang S S, Khreishi M et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. Proceedings of SPIE, 8450, 84500W(2012).

    [85] Huang S J, Liu Y, Gao N et al. Distance calibration between reference plane and screen in direct phase measuring deflectometry[J]. Sensors, 18, 144(2018).

    [86] Graves L R, Quach H, Choi H et al. Infinite deflectometry enabling 2π-steradian measurement range[J]. Optics Express, 27, 7602-7615(2019).

    [87] Balzer J, Werling S. Principles of shape from specular reflection[J]. Measurement, 43, 1305-1317(2010).

    [88] Zhang Z H, Chang C X, Liu X H et al. Phase measuring deflectometry for obtaining 3D shape of specular surface: a review of the state-of-the-art[J]. Optical Engineering, 60, 020903(2021).

    [89] Zang Z M, Peng S J, Jin W Z et al. In-situ measurement and compensation of complex spatio-temporal couplings in ultra-intense lasers[J]. Optics and Lasers in Engineering, 160, 107239(2023).

    [90] Pant K K, Burada D R, Bichra M et al. Weighted spline based integration for reconstruction of freeform wavefront[J]. Applied Optics, 57, 1100-1109(2018).

    [91] Burada D R, Pant K K, Bichra M et al. Experimental investigations on characterization of freeform wavefront using Shack-Hartmann sensor[J]. Optical Engineering, 56, 084107(2017).

    [92] Wei H S, Yan F, Chen X D et al. Large-aperture space optical system testing based on the scanning Hartmann[J]. Applied Optics, 56, 2078-2083(2017).

    [93] Takaya Y. In-process and on-machine measurement of machining accuracy for process and product quality management: a review[J]. International Journal of Automation Technology, 8, 4-19(2014).

    [94] Gao W, Haitjema H, Fang F et al. On-machine and in-process surface metrology for precision manufacturing[J]. CIRP Annals, 68, 843-866(2019).

    [95] Shimizu Y, Li Q L, Kogure M et al. On-machine diameter measurement of a cylindrical workpiece with a reference artefact[J]. Measurement Science and Technology, 32, 105012(2021).

    [96] Lee K W, Ito S, Shimizu Y et al. An air-bearing displacement sensor for nanometrology of surface forms[C], 2469-2471(2012).

    [97] Wang S X, Cheung C F, Kong L B et al. Fiducial-aided calibration of a displacement laser probing system for in situ measurement of optical freeform surfaces on an ultra-precision fly-cutting machine[J]. Optics Express, 28, 27415-27432(2020).

    [98] Zhang X D, Zeng Z, Liu X L et al. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement[J]. Optics Express, 23, 24800-24810(2015).

    [99] Tong Z, Zhong W B, To S et al. Fast-tool-servo micro-grooving freeform surfaces with embedded metrology[J]. CIRP Annals, 69, 505-508(2020).

    [100] Chen Z Z, Wang Z D, Ren M J et al. Development of an on-machine measurement system for ultra-precision machine tools using a chromatic confocal sensor[J]. Precision Engineering, 74, 232-241(2022).

    [101] Zhu W L, Yang S, Ju B F et al. Scanning tunneling microscopy-based on-machine measurement for diamond fly cutting of micro-structured surfaces[J]. Precision Engineering, 43, 308-314(2016).

    [102] Shibuya A, Arai Y, Yoshikawa Y et al. A spiral scanning probe system for micro-aspheric surface profile measurement[J]. The International Journal of Advanced Manufacturing Technology, 46, 845-862(2010).

    [103] Li D, Jiang X Q, Tong Z et al. Development and application of interferometric on-machine surface measurement for ultraprecision turning process[J]. Journal of Manufacturing Science and Engineering, 141, 014502(2019).

    [104] Li D, Tong Z, Jiang X et al. Calibration of an interferometric on-machine probing system on an ultra-precision turning machine[J]. Measurement, 118, 96-104(2018).

    [105] Yang S M, Zhang G F. A review of interferometry for geometric measurement[J]. Measurement Science and Technology, 29, 102001(2018).

    [106] Mendikute A, Leizea I, Yagüe-Fabra J A et al. Self-calibration technique for on-machine spindle-mounted vision systems[J]. Measurement, 113, 71-81(2018).

    [107] Zhang B, Ziegert J, Farahi F et al. In situ surface topography of laser powder bed fusion using fringe projection[J]. Additive Manufacturing, 12, 100-107(2016).

    [108] Zhang X D, Jiang L, Zhang G. Novel method of positioning optical freeform surfaces based on fringe deflectometry[J]. CIRP Annals, 66, 507-510(2017).

    [109] Zhang X C, Xu M. In-situ deflectometric measurement of optical surfaces for precision manufacturing[J]. Opto-Electronic Engineering, 47, 74-83(2020).

    [110] Weckenmann A, Jiang X, Sommer K D et al. Multisensor data fusion in dimensional metrology[J]. CIRP Annals, 58, 701-721(2009).

    [111] Maiseli B, Gu Y, Gao H. Recent developments and trends in point set registration methods[J]. Journal of Visual Communication and Image Representation, 46, 95-106(2017).

    [112] Zhu H, Guo B, Zou K et al. A review of point set registration: from pairwise registration to groupwise registration[J]. Sensors, 19, 1191(2019).

    [113] Besl P J, McKay N D. Method for registration of 3-D shapes[J]. Proceedings of SPIE, 1611, 586-606(1992).

    [114] Zhang Z Y. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 13, 119-152(1994).

    [115] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C], 145-152(2002).

    [116] Gao Y, Ma J Y, Zhao J et al. A robust and outlier-adaptive method for non-rigid point registration[J]. Pattern Analysis and Applications, 17, 379-388(2014).

    [117] Liu S L, Sun G, Niu Z D et al. Robust rigid coherent point drift algorithm based on outlier suppression and its application in image matching[J]. Journal of Applied Remote Sensing, 9, 095085(2015).

    [118] Mehmetoglu M S, Akyol E, Rose K. Deterministic annealing-based optimization for zero-delay source-channel coding in networks[J]. IEEE Transactions on Communications, 63, 5089-5100(2015).

    [119] Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images[J]. Computer Vision and Image Understanding, 61, 295-307(1995).

    [120] Chen Y, Medioni G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 10, 145-155(1992).

    [121] Mitra N J, Nguyen A. Estimating surface normals in noisy point cloud data[C], 322-328(2003).

    [122] Demantké J, Mallet C, David N et al. Dimensionality based scale selection in 3d lidar point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 97-102(2011).

    [123] Elseberg J, Magnenat S, Siegwart R et al. Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration[J]. Journal of Software Engineering for Robotics, 3, 2-12(2012).

    [124] Sharp G C, Lee S W, Wehe D K. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 90-102(2002).

    [125] Liu Y W. Development of Huston’s method on multibody dynamics[J]. China Mechanical Engineering, 11, 601-607(2000).

    [126] Li Y, Gu P. Free-form surface inspection techniques state of the art review[J]. Computer-Aided Design, 36, 1395-1417(2004).

    [127] Ren M J, Cheung C F, Kong L B et al. Invariant-feature-pattern-based form characterization for the measurement of ultraprecision freeform surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 61, 963-973(2012).

    [128] Zhu K P, Wong Y S, Lu W F et al. A diffusion wavelet approach for 3-D model matching[J]. Computer-Aided Design, 41, 28-36(2009).

    [129] Cheung C F, Li H, Lee W B et al. An integrated form characterization method for measuring ultra-precision freeform surfaces[J]. International Journal of Machine Tools and Manufacture, 47, 81-91(2007).

    [130] Cheung C F, Kong L B, Ren M J. Measurement and characterization of ultra-precision freeform surfaces using an intrinsic surface feature-based method[J]. Measurement Science and Technology, 21, 115109(2010).

    [131] Cheung C F, Kong L, Ren M et al. Generalized form characterization of ultra-precision freeform surfaces[J]. CIRP Annals, 61, 527-530(2012).

    [132] Cheung C F, Liu M, Leach R et al. Hierarchical-information-based characterization of multiscale structured surfaces[J]. CIRP Annals, 67, 539-542(2018).

    [133] Kong L B, Cheung C F, To S et al. Measuring optical freeform surfaces using a coupled reference data method[J]. Measurement Science and Technology, 18, 2252-2260(2007).

    [134] Wang S X, Cheung C F, Ren M J et al. Fiducial-aided robust positioning of optical freeform surfaces[J]. Micromachines, 9, 52(2018).

    [135] Wang S X, Cheung C, Ren M J et al. Fiducial-aided on-machine positioning method for precision manufacturing of optical freeform surfaces[J]. Optics Express, 26, 18928-18943(2018).

    [136] Yin Y, Ren M J, Sun L et al. Gaussian process based multi-scale modelling for precision measurement of complex surfaces[J]. CIRP Annals, 65, 487-490(2016).

    [137] Colosimo B M, Pacella M, Senin N. Multisensor data fusion via Gaussian process models for dimensional and geometric verification[J]. Precision Engineering, 40, 199-213(2015).

    [138] Liu M Y, Cheung C, Cheng C H et al. A Gaussian process data modelling and maximum likelihood data fusion method for multi-sensor CMM measurement of freeform surfaces[J]. Applied Sciences, 6, 409(2016).

    [139] Wang S X, Cheung C F, Liu M Y. A fiducial-aided data fusion method for the measurement of multiscale complex surfaces[J]. The International Journal of Advanced Manufacturing Technology, 103, 1381-1389(2019).

    [140] Pagani L, Wang J, Colosimo B M et al. Fast hierarchical fusion model based on least squares B-splines approximation[J]. Precision Engineering, 60, 570-586(2019).

    [141] Ren M J, Sun L J, Liu M Y et al. A reconstruction-registration integrated data fusion method for measurement of multiscaled complex surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 66, 414-423(2017).

    [142] Ramasamy S K, Raja J. Performance evaluation of multi-scale data fusion methods for surface metrology domain[J]. Journal of Manufacturing Systems, 32, 514-522(2013).

    [143] Leach R, Sims-Waterhouse D, Medeossi F et al. Fusion of photogrammetry and coherence scanning interferometry data for all-optical coordinate measurement[J]. CIRP Annals, 67, 599-602(2018).

    [144] Wang J, Pagani L, Leach R K et al. Study of weighted fusion methods for the measurement of surface geometry[J]. Precision Engineering, 47, 111-121(2017).

    [145] Reason R E, Hopkins M R, Garrod R I[M]. Report on the measurement of surface finish by stylus methods(1944).

    [146] Jiang X J, Whitehouse D J. Technological shifts in surface metrology[J]. CIRP Annals, 61, 815-836(2012).

    [147] Brown C A, Hansen H N, Jiang X J et al. Multiscale analyses and characterizations of surface topographies[J]. CIRP Annals, 67, 839-862(2018).

    [148] He B F, Zheng H B, Ding S Y et al. A review of digital filtering in evaluation of surface roughness[J]. Metrology and Measurement Systems, 28, 217-253(2021).

    [149] Standardization I O F[S]. Geometrical Product Specification (GPS-surface texture: filtration-part 45: profile morphological: segmentation: ISO 16610-45/CD(1996).

    [150] Standardization I O F[S]. Geometrical Product Specification (GPS)-surface texture: filtration: part 85: profile morphological: segmentation: ISO 16610-85(2013).

    [151] Standardization I O F[S]. Geometrical Product Specifications (GPS)-surface texture: areal--part 2: terms, definitions and surface texture parameters: ISO 25178-2(2012).

    [152] Evans C J. Uncertainty evaluation for measurements of peak-to-valley surface form errors[J]. CIRP Annals, 57, 509-512(2008).

    [153] Malshe A P, Bapat S, Rajurkar K P et al. Bio-inspired textures for functional applications[J]. CIRP Annals, 67, 627-650(2018).

    [154] Liu Y, Cheng D W, Yang T et al. High precision integrated projection imaging optical design based on microlens array[J]. Optics Express, 27, 12264-12281(2019).

    [155] McCarthy A, Romero-Vivas J, O'Hara C et al. LED-based collimating line-light combining freeform and Fresnel optics[J]. IEEE Photonics Journal, 10, 8201713(2018).

    [156] Osten W[M]. Optical inspection of microsystems(2018).

    [157] Yoo J H, Nguyen H T, Ray N J et al. Scalable light-printing of substrate-engraved free-form metasurfaces[J]. ACS Applied Materials & Interfaces, 11, 22684-22691(2019).

    [158] Jiang X, Senin N, Scott P J et al. Feature-based characterisation of surface topography and its application[J]. CIRP Annals, 70, 681-702(2021).

    [159] Senin N, Leach R K, Pini S et al. Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps[J]. Measurement Science and Technology, 26, 095405(2015).

    [160] Jiang X J, Scott P J[M]. Advanced metrology: freeform surfaces(2020).

    [162] Kong L B, Ma Y G, Ren M J et al. Generation and characterization of ultra-precision compound freeform surfaces[J]. Science Progress, 103, 112(2020).

    [163] Couprie C, Farabet C, Najman L et al. Convolutional nets and watershed cuts for real-time semantic Labeling of RGBD videos[J]. Journal of Machine Learning Research, 15, 3489-3511(2014).

    [164] Dougherty E R[M]. Digital image processing methods(2020).

    [165] Zhang X, Zheng L G, He X et al. Design and fabrication of imaging optical systems with freeform surfaces[J]. Proceedings of SPIE, 8486, 848607(2012).

    [166] Beier M, Hartung J, Kinast J et al. Fabrication of metal mirror modules for snap-together VIS telescopes[J]. Proceedings of SPIE, 9633, 963313(2015).

    [167] Genberg V, Michels G, Myer B. Integrating optical, mechanical, and test software (with applications to freeform optics)[J]. Proceedings of SPIE, 10448, 104480T(2017).

    [168] Wang Y M, Li Z X, Liu X L et al. Freeform-objective Chernin multipass cell: application of a freeform surface on assembly simplification[J]. Applied Optics, 56, 8541-8546(2017).

    [169] Beier M, Hartung J, Peschel T et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope[J]. Applied Optics, 54, 3530-3542(2015).

    [170] Li Z X, Liu X L, Fang F Z et al. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment[J]. Optics Express, 26, 7625-7637(2018).

    [171] Lü H Y. Research on the precision detection technology of shape and position error of freeform surface based on multi-sensor[D](2023).

    [172] Lyu H Y, Kong L B, Wang S X et al. Robust and accurate measurement of optical freeform surfaces with wavefront deformation correction[J]. Optics Express, 30, 7831-7844(2022).

    Tools

    Get Citation

    Copy Citation Text

    Shixiang Wang, Lingbao Kong, Lü Haoyu. Advances in Measurement and Error Evaluation Technique of Optical Freeform Surfaces[J]. Acta Optica Sinica, 2023, 43(8): 0822013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Dec. 30, 2022

    Accepted: Feb. 13, 2023

    Published Online: Apr. 6, 2023

    The Author Email: Kong Lingbao (LKong@fudan.edu.cn)

    DOI:10.3788/AOS222192

    Topics