Chinese Journal of Ship Research, Volume. 19, Issue 1, 62(2024)
Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion
[2] [2] WANG Q, ZHANG L, BERTITO L, et al. Fast online object tracking segmentation: A unifying approach[C]Proceedings of the 2019 IEEECVF conference on Computer Vision Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 1328–1338.
[8] [8] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive crelation filters[C]2010 IEEE Computer Society Conference on Computer Vision Pattern Recognition. San Francisco, USA: IEEE, 2010: 2544–2550.
[9] [9] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of trackingbydetection with kernels[C]12nd European Conference on Computer Vision. Flence, Italy: Springer, 2012: 702–715.
[11] [11] DANELLJAN M, SHAHBAZ KHAN F, FELSBERG M, et al. Adaptive col attributes f realtime visual tracking[C]Proceedings of the 2014 IEEE Conference on Computer Vision Pattern Recognition. Columbus, USA: IEEE, 2014: 1090–1097.
[12] [12] DANELLJAN M, HÄGER G, KHAN F, et al. Accurate scale estimation f robust visual tracking[C]Proceedings of the British Machine Vision Conference. Nottingham: BMVA Press, 2014: 1–11.
[13] [13] BERTITO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners f realtime tracking[C]Proceedings of the 2016 IEEE Conference on Computer Vision Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 1401–1409.
[15] [15] DANELLJAN M, ROBINSON A, SHAHBAZ KHAN F, et al. Beyond crelation filters: Learning continuous convolution operats f visual tracking[C]14th European Conference on Computer Vision. Amsterdam, herls: Springer, 2016: 472–488.
[16] [16] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO: Efficient convolution operats f tracking[C]Proceedings of the 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu, USA: IEEE, 2017: 6931–6939.
[18] [18] MA C, YANG X K, ZHANG C Y, et al. Longterm crelation tracking[C]Proceedings of the 2015 IEEE conference on Computer Vision Pattern Recognition. Boston, USA: IEEE, 2015: 5388–5396.
[20] [20] PISNER D A, SCHNVER D M. Suppt vect machine[M]Machine learning. New Yk: Academic Press, 2020: 101–121.
[22] [22] BERTITO L, VALMADRE J, HENRIQUES J F, et al. Fullyconvolutional siamese wks f object tracking[C]European Conference on Computer Vision. Amsterdam, herls: Springer, 2016: 850–865.
[23] [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyra wks f object detection[C]Proceedings of the 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu, USA: IEEE, 2017: 936–944.
[25] [25] JIA X, LU H C, YANG M H. Visual tracking via adaptive structural local sparse appearance model[C]2012 IEEE Conference on Computer Vision Pattern Recognition. Providence, USA: IEEE, 2012: 1822–1829.
[26] [26] KHERIF F, LATYPOVA A. Principal component analysis[M]Machine learning. New Yk: Academic Press, 2020: 209–225.
[27] [27] YANG T Y, CHAN A B. Recurrent filter learning f visual tracking[C]Proceedings of the 2017 IEEE International Conference on Computer Vision Wkshops. Venice, Italy: IEEE, 2017: 2010–2019.
[29] [29] VALMADRE J, BERTITO L, HENRIQUES J F, et al. Longterm tracking in the wild: a benchmark[C]Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018: 692–707.
[30] [30] MOUDGIL A, GHI V. Longterm visual object tracking benchmark[C]14th Asian Conference on Computer Vision. Perth, Australia: Springer, 2019: 629–645.
[31] [31] HUTCHINSON B, MITCHELL M. 50 years of test (un)fairness: lessons f machine learning[C] Proceedings of the Conference on Fairness, Accountability, Transparency. Atlanta, USA: ACM, 2019: 49–58.
Get Citation
Copy Citation Text
Ning WANG, Wei WU, Yuanyuan WANG, Henan SUN. Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion[J]. Chinese Journal of Ship Research, 2024, 19(1): 62
Category:
Received: May. 16, 2023
Accepted: --
Published Online: Mar. 18, 2025
The Author Email: