Chinese Journal of Ship Research, Volume. 19, Issue 1, 62(2024)

Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion

Ning WANG1, Wei WU2, Yuanyuan WANG2, and Henan SUN3
Author Affiliations
  • 1College of Marine Engineering , Dalian Maritime University, Dalian 116026, China
  • 2College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
  • 3Ganjingzi Marine Department, Dalian Maritime Saftey Administration, Dalian 116000, China
  • show less
    References(28)

    [2] [2] WANG Q, ZHANG L, BERTITO L, et al. Fast online object tracking segmentation: A unifying approach[C]Proceedings of the 2019 IEEECVF conference on Computer Vision Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 1328–1338.

    [8] [8] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive crelation filters[C]2010 IEEE Computer Society Conference on Computer Vision Pattern Recognition. San Francisco, USA: IEEE, 2010: 2544–2550.

    [9] [9] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of trackingbydetection with kernels[C]12nd European Conference on Computer Vision. Flence, Italy: Springer, 2012: 702–715.

    [11] [11] DANELLJAN M, SHAHBAZ KHAN F, FELSBERG M, et al. Adaptive col attributes f realtime visual tracking[C]Proceedings of the 2014 IEEE Conference on Computer Vision Pattern Recognition. Columbus, USA: IEEE, 2014: 1090–1097.

    [12] [12] DANELLJAN M, HÄGER G, KHAN F, et al. Accurate scale estimation f robust visual tracking[C]Proceedings of the British Machine Vision Conference. Nottingham: BMVA Press, 2014: 1–11.

    [13] [13] BERTITO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners f realtime tracking[C]Proceedings of the 2016 IEEE Conference on Computer Vision Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 1401–1409.

    [15] [15] DANELLJAN M, ROBINSON A, SHAHBAZ KHAN F, et al. Beyond crelation filters: Learning continuous convolution operats f visual tracking[C]14th European Conference on Computer Vision. Amsterdam, herls: Springer, 2016: 472–488.

    [16] [16] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO: Efficient convolution operats f tracking[C]Proceedings of the 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu, USA: IEEE, 2017: 6931–6939.

    [18] [18] MA C, YANG X K, ZHANG C Y, et al. Longterm crelation tracking[C]Proceedings of the 2015 IEEE conference on Computer Vision Pattern Recognition. Boston, USA: IEEE, 2015: 5388–5396.

    [20] [20] PISNER D A, SCHNVER D M. Suppt vect machine[M]Machine learning. New Yk: Academic Press, 2020: 101–121.

    [22] [22] BERTITO L, VALMADRE J, HENRIQUES J F, et al. Fullyconvolutional siamese wks f object tracking[C]European Conference on Computer Vision. Amsterdam, herls: Springer, 2016: 850–865.

    [23] [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyra wks f object detection[C]Proceedings of the 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu, USA: IEEE, 2017: 936–944.

    [25] [25] JIA X, LU H C, YANG M H. Visual tracking via adaptive structural local sparse appearance model[C]2012 IEEE Conference on Computer Vision Pattern Recognition. Providence, USA: IEEE, 2012: 1822–1829.

    [26] [26] KHERIF F, LATYPOVA A. Principal component analysis[M]Machine learning. New Yk: Academic Press, 2020: 209–225.

    [27] [27] YANG T Y, CHAN A B. Recurrent filter learning f visual tracking[C]Proceedings of the 2017 IEEE International Conference on Computer Vision Wkshops. Venice, Italy: IEEE, 2017: 2010–2019.

    [29] [29] VALMADRE J, BERTITO L, HENRIQUES J F, et al. Longterm tracking in the wild: a benchmark[C]Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018: 692–707.

    [30] [30] MOUDGIL A, GHI V. Longterm visual object tracking benchmark[C]14th Asian Conference on Computer Vision. Perth, Australia: Springer, 2019: 629–645.

    [31] [31] HUTCHINSON B, MITCHELL M. 50 years of test (un)fairness: lessons f machine learning[C] Proceedings of the Conference on Fairness, Accountability, Transparency. Atlanta, USA: ACM, 2019: 49–58.

    Tools

    Get Citation

    Copy Citation Text

    Ning WANG, Wei WU, Yuanyuan WANG, Henan SUN. Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion[J]. Chinese Journal of Ship Research, 2024, 19(1): 62

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 16, 2023

    Accepted: --

    Published Online: Mar. 18, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03364

    Topics