Acta Optica Sinica, Volume. 43, Issue 17, 1714001(2023)
All-Fiber Laser Amplifier of 3.5 kW and 1050 nm with Near-Single-Mode
[1] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8555(2010).
[2] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).
[3] Liu A, Mead R, Vatter T et al. Spectral beam combining of high-power fiber lasers[J]. Proceedings of SPIE, 5335, 81-88(2004).
[4] Jiang M, Ma P F, Su R T et al. Research progress and prospect of spectral beam combining[J]. Infrared and Laser Engineering, 49, 20201053(2020).
[5] He X B, Xi X M, Zhang H W et al. Research progress of fiber laser spectral combining based on dichromatic mirror[J]. Laser & Optoelectronics Progress, 58, 0900004(2021).
[6] Jeong Y, Nilsson J, Sahu J K et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 546-551(2007).
[7] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).
[8] Tao R M, Ma P F, Wang X L et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 51, 1600106(2015).
[9] Silva A, Boller K J, Lindsay I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 19, 10511-10517(2011).
[10] Luo Y, Wang X L, Zhang H W et al. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers[J]. Acta Physica Sinica, 66, 234206(2017).
[11] Naderi N A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 41, 1018-1021(2016).
[12] Chu Q H, Shu Q, Liu Y et al. 3 kW high OSNR 1030 nm single-mode monolithic fiber amplifier with a 180 pm linewidth[J]. Optics Letters, 45, 6502-6505(2020).
[13] Xu Y, Sheng Q, Wang P et al. 2.4 kW 1045 nm narrow-spectral-width monolithic single-mode CW fiber laser by using an FBG-based MOPA configuration[J]. Applied Optics, 60, 3740-3746(2021).
[14] Zheng Y H, Han Z G, Li Y L et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 30, 12670-12683(2022).
[15] Zhang C, Xie L H, Chu Q H et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 34, 126-137(2022).
[16] Ballato J, Cavillon M, Dragic P. A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering[J]. International Journal of Applied Glass Science, 9, 263-277(2018).
[17] Liu R, Yan D P, Chen M et al. Enhanced cladding pump absorption of ytterbium-doped double cladding fiber with internally modified cladding structures[J]. Optical Materials Express, 10, 36-45(2020).
[18] Zeng L F, Pan Z Y, Xi X M et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).
[19] Zeng L F, Yang H, Xi X M et al. Optimization and demonstration of 6 kW oscillating-amplifying integrated fiber laser employing spindle-shaped fiber to suppress SRS and TMI[J]. Optics & Laser Technology, 159, 108903(2023).
[20] Bobkov K K, Andrianov A V, Koptev M Y et al. Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier[J]. Optics Express, 25, 26958-26972(2017).
[21] Zhang Z L, Zhang F F, Lin X F et al. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output[J]. Acta Physica Sinica, 69, 234205(2020).
[22] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126022(2020).
[23] Hu Q H, Zhao X F, Tian X et al. Stimulated Raman scattering filters based on long period fiber gratings[J]. Acta Optica Sinica, 41, 1806003(2021).
[24] Zhao X F, Tian X, Hu Q H et al. Raman suppression in a high-power single-mode fiber oscillator using a chirped and tilted fiber Bragg grating[J]. Laser Physics Letters, 18, 035103(2021).
[25] Chen H, Cao J, Huang Z H et al. Experimental investigations on multi-kilowatt all-fiber distributed side-pumped oscillators[J]. Laser Physics, 29, 075103(2019).
[26] Wang J M, Yan D P, Xiong S S et al. High power all-fiber amplifier with different seed power injection[J]. Optics Express, 24, 14463-14469(2016).
[27] Wang Y S, Peng W J, Ke W W et al. Influence of seed instability on the stimulated Raman scattering of high power narrow linewidth fiber amplifier[J]. Optical and Quantum Electronics, 52, 193(2020).
[28] Liu W, Ma P F, Lü H B et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 24, 26715-26721(2016).
[29] Liu W, Ma P F, Lü H B et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source[J]. Optics Express, 24, 8708-8717(2016).
[30] Wang X L, Zhang H W, Yang B L et al. High-power ytterbium-doped fiber laser oscillator: current situation and future developments[J]. Chinese Journal of Lasers, 48, 0401004(2021).
[31] Zhang F F, Xu H Z, Xing Y B et al. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Physics Letters, 16, 035104(2019).
[32] Tao R M, Su R T, Ma P F et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letters, 14, 025101(2016).
[33] Lin H, Tao R, Li C et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 27, 9716-9724(2019).
[34] Huang Y, Edgecumbe J, Holten R et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1028 similar to 1100 nm[J]. Proceedings of SPIE, 8961, 89612K(2014).
[35] Bock V, Liem A, Schreiber T et al. Explanation of stimulated Raman scattering in high power fiber systems[J]. Proceedings of SPIE, 10512, 10512F(2018).
[36] Ye Y, Yang B L, Wang X L et al. Experimental study of SRS threshold dependence on the bandwidths of fiber Bragg gratings in co-pumped and counter-pumped fiber laser oscillator[J]. Journal of Optics, 21, 025801(2018).
[37] Xu H Y, Jiang M, Shi C et al. Spectral shaping for suppressing stimulated-Raman-scattering in a fiber laser[J]. Applied Optics, 56, 3538-3542(2017).
[38] Yang B L, Wang P, Zhang H W et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).
[39] Liem A, Freier E, Matzdorf C et al. Experimental analysis of the influence of the spectral width of out-coupling fiber Bragg gratings to the amount of stimulated Raman scattering in a cw kW fiber oscillator[C], JTh2A.32(2013).
[40] Beier F, Möller F, Sattler B et al. Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers[J]. Optics Letters, 43, 1291-1294(2018).
[41] Johansen M M, Laurila M, Maack M D et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 21, 21847-21856(2013).
[42] Otto H J, Stutzki F, Jansen F et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 20, 15710-15722(2012).
Get Citation
Copy Citation Text
Xiangming Meng, Baolai Yang, Xiaoming Xi, Peng Wang, Chen Shi, Hanwei Zhang, Xiaolin Wang. All-Fiber Laser Amplifier of 3.5 kW and 1050 nm with Near-Single-Mode[J]. Acta Optica Sinica, 2023, 43(17): 1714001
Category: Lasers and Laser Optics
Received: Feb. 15, 2023
Accepted: Apr. 3, 2023
Published Online: Sep. 14, 2023
The Author Email: Yang Baolai (yangbaolai1989@163.com), Wang Xiaolin (chinawxllin@163.com)