Laser & Optoelectronics Progress, Volume. 56, Issue 11, 111001(2019)

Multimodal Remote Sensing Image Classification with Small Sample Size Based on High-Level Feature Fusion

Qi He1, Yao Li1, Wei Song1, Dongmei Huang1,2、*, Shengqi He1, and Yanling Du1
Author Affiliations
  • 1 College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
  • 2 Shanghai University of Electric Power, Shanghai 200090, China
  • show less
    References(50)

    [2] Guo Y, Jia X, Remote Sensing, Spatial Information Sciences. IV-, 4/W2, 161-165(2017).

         Guo Y, Jia X, Remote Sensing, Spatial Information Sciences. IV-, 4/W2, 161-165(2017).

    [10] Simonyan K. -04-10)[2018-10-20]. https:∥arxiv., org/abs/1409, 1556(2015).

         Simonyan K. -04-10)[2018-10-20]. https:∥arxiv., org/abs/1409, 1556(2015).

    [11] Eitel A, Springenberg J T, Spinello L et al. Multimodal deep learning for robust RGB-D object recognition. [C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015, Hamburg, Germany. New York: IEEE, 15666832(2015).

         Eitel A, Springenberg J T, Spinello L et al. Multimodal deep learning for robust RGB-D object recognition. [C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015, Hamburg, Germany. New York: IEEE, 15666832(2015).

    [12] Xu Y, Du J, Dai L R et al. Cross-language transfer learning for deep neural network based speech enhancement. [C]∥The 9th International Symposium on Chinese Spoken Language Processing, September 12-14, 2014, Singapore, Singapore. New York: IEEE, 14700579(2014).

         Xu Y, Du J, Dai L R et al. Cross-language transfer learning for deep neural network based speech enhancement. [C]∥The 9th International Symposium on Chinese Spoken Language Processing, September 12-14, 2014, Singapore, Singapore. New York: IEEE, 14700579(2014).

    [14] Ahmed A, Yu K, Xu W et al. Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks[M]. ∥Forsyth D, Torr P, Zisserman A. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 69-82(2008).

         Ahmed A, Yu K, Xu W et al. Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks[M]. ∥Forsyth D, Torr P, Zisserman A. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 69-82(2008).

    [16] Ding X, Jiang Y, Huang Y et al. Pan-sharpening with a Bayesian nonparametric dictionary learning model. [C]∥Artificial Intelligence and Statistics. [S.l.]: [s.n.], 176-184(2014).

         Ding X, Jiang Y, Huang Y et al. Pan-sharpening with a Bayesian nonparametric dictionary learning model. [C]∥Artificial Intelligence and Statistics. [S.l.]: [s.n.], 176-184(2014).

    [17] Hane C, Zach C, Cohen A et al. Joint 3D scene reconstruction and class segmentation. [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 13824292(2013).

         Hane C, Zach C, Cohen A et al. Joint 3D scene reconstruction and class segmentation. [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 13824292(2013).

    [21] Couprie C, Farabet C, Najman L et al. -03-14)[2018-10-20]. https:∥arxiv., org/abs/1301, 3572(2013).

         Couprie C, Farabet C, Najman L et al. -03-14)[2018-10-20]. https:∥arxiv., org/abs/1301, 3572(2013).

    [25] Zhou R T, Li Z P, Wu C et al. Buddy routing: a routing paradigm for NanoNets based on physical layer network coding. [C]∥2012 21st International Conference on Computer Communications and Networks (ICCCN), July 30-August 2, 2012, Munich, Germany. New York: IEEE, 12965366(2012).

         Zhou R T, Li Z P, Wu C et al. Buddy routing: a routing paradigm for NanoNets based on physical layer network coding. [C]∥2012 21st International Conference on Computer Communications and Networks (ICCCN), July 30-August 2, 2012, Munich, Germany. New York: IEEE, 12965366(2012).

    Tools

    Get Citation

    Copy Citation Text

    Qi He, Yao Li, Wei Song, Dongmei Huang, Shengqi He, Yanling Du. Multimodal Remote Sensing Image Classification with Small Sample Size Based on High-Level Feature Fusion[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 7, 2018

    Accepted: Dec. 25, 2018

    Published Online: Jun. 13, 2019

    The Author Email: Dongmei Huang (dmhuang@shou.edu.cn)

    DOI:10.3788/LOP56.111001

    Topics