Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1779(2025)

Screening of Zeolite Framework Sodium Ion Conductor Based on Machine Learning Potential Function

FU Xiao, XIAO Ruijuan, and LI Hong
Author Affiliations
  • Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    References(36)

    [1] [1] HAN X, CHEN J Z, CHEN M F, et al. Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes[J]. Energy Storage Mater, 2021, 39: 250–258.

    [2] [2] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403–10473.

    [3] [3] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.

    [4] [4] LI S M, CHEN Z F, ZHANG W T, et al. High-throughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries[J]. Nano Energy, 2022, 102: 107640.

    [5] [5] GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy Environ Sci, 2014, 7(1): 14–18.

    [6] [6] WANG S, FU J M, LIU Y S, et al. Design principles for sodium superionic conductors[J]. Nat Commun, 2023, 14(1): 7615.

    [7] [7] ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23685–23693.

    [8] [8] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8: 15893.

    [9] [9] ZHANG B K, ZHONG J J, ZHANG Y P, et al. Discovering a New class of fluoride solid-electrolyte materialsviascreening the structural property of Li-ion sublattice[J]. Nano Energy, 2021, 79: 105407.

    [10] [10] JUN K, SUN Y Z, XIAO Y H, et al. Lithium superionic conductors with corner-sharing frameworks[J]. Nat Mater, 2022, 21: 924–931.

    [11] [11] XU J, WANG Y Q, WU S Y, et al. New halide-based sodium-ion conductors Na3Y2Cl9 inversely designed by building block construction[J]. ACS Appl Mater Interfaces, 2023, 15(17): 21086–21096.

    [12] [12] LAVRINENKO A K, FAMPRIKIS T, QUIRK J A, et al. Optimizing ionic transport in argyrodites: A unified view on the role of sulfur/halide distribution and local environments[J]. J Mater Chem A Mater, 2024, 12(39): 26596–26611.

    [13] [13] ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378(6626): 1320–1324.

    [14] [14] JANG S H, TATEYAMA Y, JALEM R. High-throughput data-driven prediction of stable high-performance Na-ion sulfide solid electrolytes[J]. Adv Funct Mater, 2022, 32(48): 2206036.

    [15] [15] SENDEK A D, YANG Q, CUBUK E D, et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials[J]. Energy Environ Sci, 2017, 10(1): 306–320.

    [16] [16] FU X, WANG Y Q, XU J, et al. First-principles study on a new chloride solid lithium-ion conductor material with high ionic conductivity[J]. J Mater Chem A, 2024, 12(17): 10562–10570.

    [17] [17] LI Y, YU J H. Emerging applications of zeolites in catalysis, separation and host–guest assembly[J]. Nat Rev Mater, 2021, 6: 1156–1174.

    [18] [18] KELEMEN G, SCHN G. Ionic conductivity in dehydrated zeolites[J]. J Mater Sci, 1992, 27(22): 6036–6040.

    [19] [19] LI M L, CHI X W, YU J H. Zeolite-based electrolytes: A promising choice for solid-state batteries[J]. PRX Energy, 2022, 1(3): 031001.

    [20] [20] CHI X W, LI M L, DI J C, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery[J]. Nature, 2021, 592(7855): 551–557.

    [21] [21] PLUTH J J, SMITH J V. Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of silicon, aluminum-ordered superstructure[J]. J Am Chem Soc, 1980, 102(14): 4704–4708.

    [22] [22] ANSTINE D M, ISAYEV O. Machine learning interatomic potentials and long-range physics[J]. J Phys Chem A, 2023, 127(11): 2417–2431.

    [23] [23] LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434–450.

    [24] [24] DERINGER V L, CARO M A, CSNYI G. Machine learning interatomic potentials as emerging tools for materials science[J]. Adv Mater, 2019, 31(46): e1902765.

    [25] [25] LEE J, JU S, HWANG S, et al. Disorder-dependent Li diffusion in Li6PS5Cl investigated by machine-learning potential[J]. ACS Appl Mater Interfaces, 2024, 16(35): 46442–46453.

    [26] [26] LIU Y S, HE X F, MO Y F. Discrepancies and error evaluation metrics for machine learning interatomic potentials[J]. NPJ Comput Mater, 2023, 9: 174.

    [27] [27] HIMANEN L, JGER M O J, MOROOKA E V, et al. DScribe: Library of descriptors for machine learning in materials science[J]. Comput Phys Commun, 2020, 247: 106949.

    [28] [28] DE S, BARTK A P, CSNYI G, et al. Comparing molecules and solids across structural and alchemical space[J]. Phys Chem Chem Phys, 2016, 18(20): 13754–13769.

    [29] [29] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.

    [30] [30] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.

    [31] [31] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. J Chem Phys, 1996, 105(22): 9982–9985.

    [32] [32] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [33] [33] NOS S. Constant temperature molecular dynamics methods[J]. Prog Theor Phys Suppl, 1991, 103: 1–46.

    [34] [34] DENG B W, ZHONG P C, JUN K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling[J]. Nat Mach Intell, 2023, 5(9): 1031–1041.

    [35] [35] LARSEN A H, MORTENSEN J J, BLOMQVIST J, et al. The atomic simulation environment-a Python library for working with atoms[J]. J Phys Condens Matter, 2017, 29(27): 273002.

    [36] [36] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. 2013, 1(1): 011002.

    Tools

    Get Citation

    Copy Citation Text

    FU Xiao, XIAO Ruijuan, LI Hong. Screening of Zeolite Framework Sodium Ion Conductor Based on Machine Learning Potential Function[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1779

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 25, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240746

    Topics