Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1215007(2024)

LDASH: A Local Feature Descriptor of Point Cloud with High Discrimination and Strong Robustness

Lei Zhou1, Bao Zhao1,2、*, Dong Liang1,2, Zihan Wang1, and Qiang Liu1
Author Affiliations
  • 1School of Internet, Anhui University, Hefei 230039, Anhui , China
  • 2National Joint Local Engineering Research Center for Agroecological Big Data Analysis and Application Technology, Anhui University, Hefei 230601, Anhui , China
  • show less
    Figures & Tables(14)
    Constructive illustration of the surface change angle θj
    Generating process of LDASH descriptor. (a) Extraction of local surface around the keypoint p on the chicken model from the U3M dataset; (b) construction of LRA on the local surface; (c) uniform division of local space in the radial direction; (d) calculation of five attribute values for each neighboring point; (e) statistical analysis of the distribution of the five attributes; (f) statistical histograms of five geometric attributes; (g) generation of five sub-histograms; (h) final histogram HLDASH
    Distribution statistics of six attribute values (r, h, α, β, γ, and DDWAV) in a large number of local neighborhoods on the B3R dataset. (a) Radial distance r; (b) height distance h; (c) angle α; (d) angle β; (e) angle γ; (f) DDWAV
    RPC performance evaluation results of five histograms on the B3R dataset
    Three typical point clouds in B3R, QULD, U3M, U3OR and S3R dataset. (a) B3R dataset; (b) QuLD dataset; (c) U3M dataset; (d) U3OR dataset; (e) S3R dataset; (f) K3R dataset
    Parameter settings for the LDASH descriptor (the large solid markers indicate the selected parameter values). (a) Nr、Nα、Nβ、Nγ、Nh andNDDWAV; (b) w1、w2、w3、w4 and w5; (c) Rs
    RPC performance evaluation results of nine descriptors on six datasets (the number in parenthese is the AUCprvalue of the corresponding descriptor, arranged in descending order). (a) B3R dataset; (b) QuLD dataset; (c) U3M dataset; (d) U3OR dataset; (e) S3R dataset; (f) K3R dataset
    Robustness assessments of nine descriptors at different levels of six nuisance (the number in parenthese represents the average AUCpr value over the whole curve, arranged in descending order). (a) Gaussian noise; (b) mesh decimation; (c) Gaussian noise combined with mesh decimation; (d) distance between boundary and keypoint; (e) keypoint localization error; (f) occlusion
    Time required to generate nine descriptors under different support radii (the number in parenthese is the average time consumption of the corresponding descriptor, arranged in descending order)
    Correct registration rates of five transformation estimation algorithms combined with nine descriptors on U3M dataset (the number in parenthese represents the average correct registration rate over the whole curve, arranged in descending order)
    Two registration cases of CG-SAC transformation estimation algorithm combined with nine descriptors on U3M dataset
    • Table 1. Characteristics of the six baseline datasets

      View table

      Table 1. Characteristics of the six baseline datasets

      DatasetScenarioChallengeScannerQuality#Model#Scene#Matching pair
      B3RRetrievalGaussian noise,mesh decimationCyberware 3030 MSHigh666
      U3MRegistrationOcclusionMinolta vivid 910High75433
      U3ORRecognitionOcclusion,clutterMinolta vivid 910High580188
      QuLDRecognitionOcclusion,clutter,real noiseNextEnigneLow580240
      S3RRegistrationOcclusion,real noise,outliers,missing regionsSpaceTime StereoLow57240
      K3RRegistrationOcclusion,real noise,missing regionsMicrosoft KinectLow69284
    • Table 2. Parameter setting process for LDASH descriptor

      View table

      Table 2. Parameter setting process for LDASH descriptor

      NrNαNβNγNhNDDWAVw1w2w3w4w5
      Setting Nr2‒20151515551.01.01.01.01.0
      Setting Nα52‒201515551.01.01.01.01.0
      Setting Nβ5182‒2015551.01.01.01.01.0
      Setting Nγ518152‒20551.01.01.01.01.0
      Setting Nh51815172‒2051.01.01.01.01.0
      Setting NDDWAV5181517132‒201.01.01.01.01.0
      Setting w151815171380.1‒2.01.01.01.01.0
      Setting w251815171381.00.1‒2.01.01.01.0
      Setting w351815171381.01.60.1‒2.01.01.0
      Setting w451815171381.01.61.00.1‒2.01.0
      Setting w551815171381.01.61.00.80.1‒2.0
    • Table 3. Parameter settings for nine descriptors

      View table

      Table 3. Parameter settings for nine descriptors

      DescriptorSupport radiusDimensionalityLength
      SI 1715rm15×15225
      RoPS3115rm3×3×3×5135
      SHOT2015rm8×2×2×11352
      TriSI415rm15×15×3675
      TOLDI2115rm3×20×201200
      MaSH3015rm5×(10+8+10)140
      SDASS2215rm15×5×5‒30345
      DLFS2315rm5×(9+12+12+15)240
      LDASH15rm5×(18+15+17+13+8)355
    Tools

    Get Citation

    Copy Citation Text

    Lei Zhou, Bao Zhao, Dong Liang, Zihan Wang, Qiang Liu. LDASH: A Local Feature Descriptor of Point Cloud with High Discrimination and Strong Robustness[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1215007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 31, 2023

    Accepted: Oct. 13, 2023

    Published Online: May. 20, 2024

    The Author Email: Bao Zhao (zhaobao625@163.com)

    DOI:10.3788/LOP231825

    CSTR:32186.14.LOP231825

    Topics