International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45505(2025)
Tunable anisotropy in wide-bandgap 2D crystal CaNb2O6 utilizing nanomechanical resonators
[1] [1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H. 2016. 2D materials and van der Waals heterostructures.Science353, aac9439.
[2] [2] Yoder M N. 1996. Wide bandgap semiconductor materials and devices.IEEE Trans. Electron Devices43, 1633–1636.
[3] [3] Hicks J et al. 2013. A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene.Nat. Phys.9, 49–54.
[4] [4] Li Z Q, Yan T T and Fang X S. 2023. Low-dimensional widebandgap semiconductors for UV photodetectors.Nat. Rev. Mater.8, 587–603.
[5] [5] Fishman D A, Cirloganu C M, Webster S, Padilha L A, Monroe M, Hagan D J and Van Stryland E W. 2011. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption.Nat. Photon.5, 561–565.
[6] [6] Mao L et al. 2022. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency.Adv. Mater.34, e2206193.
[7] [7] Zheng X Q, Zhao H P, Jia Z T, Tao X T and Feng P X L. 2021. Young’s modulus and corresponding orientation in -Ga2O3 thin films resolved by nanomechanical resonators.Appl. Phys. Lett.119, 013505.
[8] [8] Neudeck P G, Okojie R S and Chen L Y. 2002. High-temperature electronics—a role for wide bandgap semiconductors?Proc. IEEE90, 1065–1076.
[9] [9] Chalker P R. 1999. Wide bandgap semiconductor materials for high temperature electronics.Thin Solid Films343–344, 616–622.
[10] [10] Liu Z et al. 2013. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride.Nat. Commun.4, 2541.
[11] [11] Tsai H, Liu F Z, Shrestha S, Fernando K, Tretiak S, Scott B, Vo D T, Strzalka J and Nie W Y. 2020. A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes.Sci. Adv.6, eaay0815.
[12] [12] Zhou F et al. 2023. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics.Nat. Commun.14, 4459.
[13] [13] Feng G L, Li L and Xu D P. 2021. Optical properties of CaNb2O6 single crystals grown by OFZ.Crystals11, 928.
[14] [14] Cho I S, Bae S T, Yim D K, Kim D W and Hong K S. 2009. Preparation, characterization, and photocatalytic properties of CaNb2O6 nanoparticles.J. Am. Ceram. Soc.92, 506–510.
[15] [15] Li D B, Sun X J, Song H, Li Z M, Chen Y R, Jiang H and Miao G Q. 2012. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement.Adv. Mater.24, 845–849.
[16] [16] Kimoto T and Cooper J A. 2014.Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications. (John Wiley & Sons, Singapore). (https://doi.org/10.1002/9781118313534)
[17] [17] Cho I-S, Kim D K, Cho C M, An J-S, Roh H-S and Hong K S. 2010. Synthesis, characterization and photocatalytic properties of CaNb2O6 with ellipsoid-like plate morphology.Solid State Sci.12, 982–988.
[18] [18] Li D Z, Xu X D, Xu C W, Zhang J, Tang D Y, Cheng Y and Xu J. 2011. Diode-pumped femtosecond Yb: CaNb2O6 laser.Opt. Lett.36, 3888–3890.
[19] [19] Qin J K, Xiao H, Zhu C Y, Zhen L and Xu C Y. 2022. Lowsymmetry 2D perovskite CaNb2O6 for polarization-sensitive UV photodetection.Adv. Opt. Mater.10, 2201627.
[20] [20] Satapathy J and Ramana Reddy M V. 2011. Dielectric and thermal studies of ANb2O6 (A=Ca, Mg, Cu, Ni) for LTCC application.Int. J. Appl. Phys. Math.1, 181–184.
[21] [21] Teixeira N G, Moreira R L, Andreeta M R B, Hernandes A C and Dias A. 2011. Micro far-infrared reflectivity of CaNb2O6 single crystal fibers grown by the laser-heated pedestal growth technique.Cryst. Growth Des.11, 3472–3478.
[22] [22] Wang Z M et al. 2021. Strong in-plane anisotropic SiP2 as a IV–V 2D semiconductor for polarized photodetection.ACS Nano15, 20442–20452.
[23] [23] Liu F C et al. 2016. Highly sensitive detection of polarized light using anisotropic 2D ReS2.Adv. Funct. Mater.26, 1169–1177.
[24] [24] Fan X L, Chen Z H, Xu D F, Zou L W, Ouyang F P, Deng S B, Wang X, Zhao J and Zhou Y. 2024. Phase-controlled synthesis of large-area trigonal 2D Cr2S3 thin films via ultralow gas-flow governed dynamic transport.Adv. Funct. Mater.34, 2404750.
[25] [25] Fan X L, Zou L W, Chu W L, Wang L and Zhou Y. 2023. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition.Appl. Phys. Lett.122, 222101.
[26] [26] Wen T, Li J, Zhang M, Jiao C, Pei S, Wang Z and Xia J. 2022. Discerning the vibrational nature of ReS2 Raman modes using solid-angle-resolved Raman spectroscopy.ACS Photonics9, 3557–3562.
[27] [27] Yang H, Jussila H, Autere A, Komsa H P, Ye G J, Chen X H, Hasan T and Sun Z P. 2017. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials.ACS Photonics4, 3023–3030.
[28] [28] Liu Y J et al. 2019. Synthesis of low-symmetry 2D Ge(1−x) SnxSe2 alloy flakes with anisotropic optical response and birefringence.Nanoscale11, 23116–23125.
[29] [29] Fan X G, Forsberg F, Smith A D, Schrder S, Wagner S, Rdjegrd H, Fischer A C, stling M, Lemme M C and Niklaus F. 2019. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers.Nat. Electron.2, 394–404.
[30] [30] Kim H et al. 2018. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics.Adv. Funct. Mater.28, 1801847.
[31] [31] Zhang X Y et al. 2023. High-pressure synthesis of single-crystalline SnS nanoribbons.Nano Lett.23, 7449–7455.
[32] [32] Najjari H and Vali R. 2023. Lattice vibration and dielectric properties of CaNb2O6.Solid State Commun.373–374, 115340.
[33] [33] Wang Z H, Lee J, He K L, Shan J and Feng P X L. 2014. Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators.Sci. Rep.4, 3919.
[34] [34] Graff K F. 1975.Wave Motion in Elastic Solids. (Clarendon Press, Oxford).
[35] [35] Satapathy J and Ramana Reddy M V. 2013. Study of elastic moduli of low temperature sintered Ni0.5A0.5Nb2O6 for LTCC (A=Ca, Mg, Cu).J. Mater. Res. Technol.2, 130–134.
[36] [36] Musgrave M J P. 1970.Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals. (Holden-Day, San Francisco).
[37] [37] Audoin B, Bescond C and Deschamps M. 1996. Measurement of stiffness coefficients of anisotropic materials from point-like generation and detection of acoustic waves.J. Appl. Phys.80, 3760–3771.
[38] [38] Lee C, Wei X D, Kysar J W and Hone J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science321, 385–388.
[39] [39] Hu X, Yasaei P, Jokisaari J, t S, Salehi-Khojin A and Klie R F. 2018. Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale.Phys. Rev. Lett.120, 055902.
[40] [40] Steward E G and Cook B P. 1960. X-ray measurement of thermal expansion perpendicular to the layer planes of artificial and natural graphites.Nature185, 78–80.
[41] [41] Evertz S, Music D, Schnabel V, Bednarcik J and Schneider J M. 2017. Thermal expansion of Pd-based metallic glasses byab initiomethods and high energy x-ray diffraction.Sci. Rep.7, 15744.
[42] [42] Wang L M, Zhang P C, Liu Z H, Wang Z H and Yang R. 2023. On-chip mechanical computing: status, challenges, and opportunities.Chip2, 100038.
[43] [43] Zou X C, Yaqoob U, Ahmed S, Wang Y, Salama K N and Fariborzi H. 2023. An interconnect-free microelectromechanical 7-bit arithmetic device for multi-operand programmable computing.Microsyst. Nanoeng.9, 42.
[44] [44] Zhu J Z et al. 2024. Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: -In2S3.InfoMat6, e12553.
[45] [45] Pan F, Cui K Y, Huang Y D, Chen Z M, Wu N, Bai G R, Huang Z L, Feng X, Liu F and Zhang W. 2023. Phonon lasing enhanced mass sensor with zeptogram resolution under ambient conditions.Chip2, 100050.
[46] [46] Xu X B, Wang W T, Sun L Y and Zou C L. 2022. Hybrid superconducting photonic-phononic chip for quantum information processing.Chip1, 100016.
[47] [47] Xu B et al. 2022. Nanomechanical resonators: toward atomic scale.ACS Nano16, 15545–15585.
[48] [48] Xu B et al. 2025. Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe2 membranes.Microsyst. Nanoeng.11, 18.
[49] [49] Tang J et al. 2024. HF-VHF NEMS resonators enabled by 2D semiconductor ReS2.Sci. China Inf. Sci.67, 209401.
[50] [50] Lee J, Wang Z H, He K L, Shan J and Feng P X L. 2013. High frequency MoS2 nanomechanical resonators.ACS Nano7, 6086–6091.
[51] [51] Wang Z H and Feng P X L. 2015. Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy.2D Mater.2, 021001.
[52] [52] Dong S B and Lopez A E. 1985. Natural vibrations of a clamped circular plate with rectilinear orthotropy by least-squares collocation.Int. J. Solids Struct.21, 515–526.
[53] [53] Wang Z H, Jia H, Zheng X Q, Yang R, Ye G J, Chen X H and Feng P X L. 2016. Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy.Nano Lett.16, 5394–5400.
[54] [54] Xu B et al. 2023. Identifying, resolving, and quantifying anisotropy in ReS2 nanomechanical resonators.Small19, 2300631.
[55] [55] Zhu J K et al. 2022. Frequency scaling, elastic transition, and broad-range frequency tuning in WSe2 nanomechanical resonators.Nano Lett.22, 5107–5113.
[56] [56] Xu B et al. 2022. Electrically tunable MXene nanomechanical resonators vibrating at very high frequencies.ACS Nano16, 20229–20237.
[57] [57] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J and Steele G A. 2014. Deterministic transfer of two-dimensional materials by alldry viscoelastic stamping.2D Mater.1, 011002.
[58] [58] Yang R, Zheng X Q, Wang Z H, Miller C J and Feng P X L. 2014. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing.J. Vac. Sci. Technol.B32, 061203.
[59] [59] Wang Z H and Feng P X L. 2016. Interferometric motion detection in atomic layer 2D nanostructures: visualizing signal transduction efficiency and optimization pathways.Sci. Rep.6, 28923.
[60] [60] Zhu J K, Zhang P C, Yang R and Wang Z H. 2022. Analyzing electrostatic modulation of signal transduction efficiency in MoS2 nanoelectromechanical resonators with interferometric readout.Sci. China Inf. Sci.65, 122409.
[61] [61] Zhu J K et al. 2023. Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: pathways towards quantumnoise-limited measurement at room temperature.Chin. Phys. Lett.40, 038102.
[62] [62] Wang Z H, Lee J and Feng P X L. 2014. Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators.Nat. Commun.5, 5158.
[63] [63] Zheng X Q, Lee J and Feng P X L. 2017. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion.Microsyst. Nanoeng.3, 17038.
[64] [64] Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H P and Feng P X L. 2017. Ultrawide band gap -Ga2O3 nanomechanical resonators with spatially visualized multimode motion.ACS Appl. Mater. Interfaces9, 43090–43097.
[65] [65] Islam A, van den Akker A and Feng P X L. 2018. Anisotropic thermal conductivity of suspended black phosphorus probed by opto-thermomechanical resonance spectromicroscopy.Nano Lett.18, 7683–7691.
[66] [66] Ye F, Lee J and Feng P X L. 2018. Electrothermally tunable graphene resonators operating at very high temperature up to 1200 K.Nano Lett.18, 1678–1685.
[67] [67] Suzuki H, Yamaguchi N and Izumi H. 2009. Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms.Acoust. Sci. Technol.30, 348–354.
[68] [68] Chakraverty S and Petyt M. 1999. Free vibration analysis of elliptic and circular plates having rectangular orthotropy.Struct. Eng. Mech.7, 53–67.
[69] [69] Qiu H et al. 2024. Two-dimensional materials for future information technology: status and prospects.Sci. China Inf. Sci.67, 160400.
Get Citation
Copy Citation Text
Liang Yachun, Wang Luming, Wu Song, Wu Jiaqi, Zhu Jiankai, Qin Jiaze, Fan Xiulian, Zhang Zejuan, Xu Bo, Jiao Chenyin, Pei Shenghai, Zhou Yu, Xia Juan, Wang Zenghui. Tunable anisotropy in wide-bandgap 2D crystal CaNb2O6 utilizing nanomechanical resonators[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45505
Category:
Received: Aug. 19, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: