Chinese Journal of Lasers, Volume. 50, Issue 16, 1602303(2023)
Microstructure, Phase‐Transformation Behavior, and Properties of Cu‑Al‑Mn Alloy Fabricated by Selective Laser Melting
[1] Chowdhury P, Sehitoglu H. A revisit to atomistic rationale for slip in shape memory alloys[J]. Progress in Materials Science, 85, 1-42(2017).
[2] Elahinia M, Shayesteh Moghaddam N, Taheri Andani M et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science, 83, 630-663(2016).
[3] Li B Q, Wang L, Wang B B et al. Electron beam freeform fabrication of NiTi shape memory alloys: crystallography, martensitic transformation, and functional response[J]. Materials Science and Engineering: A, 843, 143135(2022).
[4] Zuo X D, Zhang W, Chen Y et al. Wire-based directed energy deposition of NiTiTa shape memory alloys: microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties[J]. Additive Manufacturing, 59, 103115(2022).
[5] Halani P R, Shin Y C. In situ synthesis and characterization of shape memory alloy nitinol by laser direct deposition[J]. Metallurgical and Materials Transactions A, 43, 650-657(2012).
[6] Krishna B V, Bose S, Bandyopadhyay A. Laser processing of net-shape NiTi shape memory alloy[J]. Metallurgical and Materials Transactions A, 38, 1096-1103(2007).
[7] Song Y J, Zhang H M, Gu D D et al. Compression properties and shape memory effect of NiTi lightweight lattice structures fabricated by laser additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402303(2022).
[8] Saud S N, Hamzah E, Abubakar T et al. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys[J]. Journal of Materials Engineering and Performance, 23, 3620-3629(2014).
[9] Sutou Y, Omori T, Wang J J et al. Characteristics of Cu-Al-Mn-based shape memory alloys and their applications[J]. Materials Science and Engineering: A, 378, 278-282(2004).
[10] Vajpai S K, Dube R K, Sangal S. Microstructure and properties of Cu-Al-Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder preforms[J]. Materials Science and Engineering: A, 529, 378-387(2011).
[11] Zhuo L R, Song B, Li R D et al. Effect of element evaporation on the microstructure and properties of CuZnAl shape memory alloys prepared by selective laser melting[J]. Optics & Laser Technology, 127, 106164(2020).
[12] Volyanski I, Shishkovsky I V, Yadroitsev I et al. Layer-by-layer laser synthesis of Cu-Al-Ni intermetallic compounds and shape memory effect[J]. Inorganic Materials, 52, 566-572(2016).
[13] Ueland S M, Schuh C A. Superelasticity and fatigue in oligocrystalline shape memory alloy microwires[J]. Acta Materialia, 60, 282-292(2012).
[14] Gustmann T, Schwab H, Kühn U et al. Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy[J]. Materials & Design, 153, 129-138(2018).
[15] Gustmann T, Neves A, Kühn U et al. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting[J]. Additive Manufacturing, 11, 23-31(2016).
[16] Liu J L, Huang H Y, Xie J X. The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys[J]. Materials & Design, 64, 427-433(2014).
[17] Sutou Y, Omori T, Kainuma R et al. Ductile Cu-Al-Mn based shape memory alloys: general properties and applications[J]. Materials Science and Technology, 24, 896-901(2008).
[18] Lojen G, Gojić M, Anžel I. Continuously cast Cu-Al-Ni shape memory alloy-properties in as-cast condition[J]. Journal of Alloys and Compounds, 580, 497-505(2013).
[19] Liu Z Y, Li C, Fang X Y et al. Energy consumption in additive manufacturing of metal parts[J]. Procedia Manufacturing, 26, 834-845(2018).
[20] Methani M M, Revilla-León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: a review[J]. Journal of Esthetic and Restorative Dentistry, 32, 182-192(2020).
[21] Negi S, Nambolan A, Kapil S et al. Review on electron beam based additive manufacturing[J]. Rapid Prototyping Journal, 26, 485-498(2019).
[22] Huo M Z, Chen J, Yang Q et al. Influence of rod diameter on dynamic vibration damping characteristics of NiTi alloy lattice structure fabricated by selective laser melting[J]. Chinese Journal of Lasers, 49, 1402305(2022).
[23] Song Z F, Gao S, He B et al. Long-time thermal exposure microstructures and performance evolution law of selective laser melting IN625 nickel-based superalloy[J]. Chinese Journal of Lasers, 49, 1402807(2022).
[24] Sefene E M. State-of-the-art of selective laser melting process: a comprehensive review[J]. Journal of Manufacturing Systems, 63, 250-274(2022).
[25] Yao C, Yin F X, Ji P G et al. Effects of grain refinement on the microstructures and damping behaviors of a Cu-Al-Ni-Mn-Ti shape memory alloy[J]. Intermetallics, 138, 107315(2021).
[26] Gera D, Santos J, Kiminami C S et al. Comparison of Cu-Al-Ni-Mn-Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy[J]. Transactions of Nonferrous Metals Society of China, 30, 3322-3332(2020).
[27] Xue L, Atli K C, Picak S et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework[J]. Acta Materialia, 215, 117017(2021).
[28] Bormann T, Schumacher R, Müller B et al. Tailoring selective laser melting process parameters for NiTi implants[J]. Journal of Materials Engineering and Performance, 21, 2519-2524(2012).
[29] Dadbakhsh S, Speirs M, Kruth J P et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts[J]. Advanced Engineering Materials, 16, 1140-1146(2014).
[30] Hamilton R F, Bimber B A, Taheri Andani M et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition[J]. Journal of Materials Processing Technology, 250, 55-64(2017).
[31] Wang X B, Yu J Y, Liu J W et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Additive Manufacturing, 36, 101545(2020).
[32] Aydogdu A, Aydogdu Y, Adiguzel O. The influence of ageing on martensite ordering and stabilization in shape memory Cu-Al-Ni alloys[J]. Materials Research Bulletin, 32, 507-513(1997).
[33] Li Z, Wang M P, Guo M X et al. Effect of cooling rate on the order in martensite of a Cu-Zn-Al alloy[J]. Journal of Materials Science, 40, 123-127(2005).
[34] Zhou T D, Deng L J, Liang D F. Effect of Si content on ordering degree and electromagnetic characteristics in FeSiAl alloys[J]. Acta Metallurgica Sinica (English Letters), 21, 191-196(2008).
[35] Zheng C Q. Study on the crystal structure and damping capacity of Cu-Al-Mn shape memory alloys[D](2011).
Get Citation
Copy Citation Text
Mengjie Luo, Ruidi Li, Jing Lu, Xiaoping Yang, Dan Zheng, Xinyan Liu, Duan Lai, Huiting Wu, Jingtao Kang, Shenghua Deng. Microstructure, Phase‐Transformation Behavior, and Properties of Cu‑Al‑Mn Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2023, 50(16): 1602303
Category: Laser Additive Manufacturing
Received: Jan. 3, 2023
Accepted: Mar. 23, 2023
Published Online: Aug. 9, 2023
The Author Email: Li Ruidi (liruidi@csu.edu.cn)