Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 792(2025)
Analytical Relationship Between Electrostrictive Strain and Applied Electric Field in Relaxor Ferroelectrics
[2] [2] GAO X Y, YANG J K, WU J G, et al. Piezoelectric actuators and motors: Materials, designs, and applications[J]. Adv Mater Technol, 2020, 5(1): 1900716.
[5] [5] NYE J F. Physical properties of crystal[M]. Oxford Science Publications, 1993.
[6] [6] ZHANG Q M, PAN W Y, JANG S J, et al. The pressure dependence of the dielectric response and its relation to the electrostriction[J]. Ferroelectrics, 1988, 88(1): 147–154.
[7] [7] UCHINO K, NOMURA S, CROSS L E, et al. Electrostrictive effect in perovskites and its transducer applications[J]. J Mater Sci, 1981, 16(3): 569–578.
[11] [11] CHENG Z Y, BHARTI V, XU T B, et al. Transverse strain responses in electrostrictive poly(vinylidene fluoride-trifluoroethylene) films and development of a dilatometer for the measurement[J]. J Appl Phys, 1999, 86(4): 2208–2214.
[12] [12] PIRC R, KUTNJAK Z, BLINC R, et al. Electrocaloric effect in relaxor ferroelectrics[J]. J Appl Phys, 2011, 110(7): 74113.
[13] [13] SMOLENSKII G A. Physical phenomena in ferroelectrics with diffused phase transition [J]. J Phys Soc Jpn, 1970, 28 (Supl.): 26–37.
[14] [14] BOKOV A A, YE Z G. Recent progress in relaxor ferroelectrics with perovskite structure[J]. J Mater Sci, 2006, 41(1): 31–52.
[15] [15] WONGWIRAT T, ZHU Z W, RUI G C, et al. Origins of electrostriction in poly(vinylidene fluoride)-based ferroelectric polymers[J]. Macromolecules, 2020, 53(24): 10942–10954.
[16] [16] MANDELKERN L. The structure of crystalline polymers[J]. Acc. Chem. Res., 1990, 23(11): 380–386.
[17] [17] CHEN W, WUNDERLICH B. Nanophase separation of small and large molecules[J]. Macromol Chem Phys, 1999, 200(2): 283–311.
[18] [18] WUNDERLICH B. Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules[J]. Prog Polym Sci, 2003, 28(3): 383–450.
[19] [19] ULLAH A, GUL H B, ULLAH A, et al. Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning[J]. APL Mater, 2018, 6(1): 016104.
[20] [20] DENG A P, WU J J W. Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state[J]. J Eur Ceram Soc, 2021, 41(10): 5147–5154.
[21] [21] HAN J H, YIN J, WU J G. BNT-based ferroelectric ceramics: Electrical properties modification by Ta2O5 oxide addition[J]. J Am Ceram Soc, 2020, 103(1): 412–422.
[22] [22] TRAN V D N, HUSSAIN A, HAN H S, et al. Comparison of ferroelectric and strain properties between BaTiO3- and BaZrO3- modified Bi1/2(Na0.82K0.18)1/2TiO3 ceramics[J]. Jpn J Appl Phys, 2012, 51(9S2): 09MD02.
[23] [23] SHI J, FAN H Q, LIU X, et al. Large Electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions[J]. J Am Ceram Soc, 2014, 97(3): 848–853.
[24] [24] ZHANG L Y, JING R Y, HUANG Y Y, et al. Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics[J]. J Eur Ceram Soc, 2022, 42(3): 944–953.
[25] [25] QUAN Q F, FAN H Q, SHEN Q, et al. Large electrostrictive effect and dielectric properties of (K0.5Na0.5)NbO3-BaZrO3 ceramics[J]. J Eur Ceram Soc, 2022, 42(5): 2195–2203.
[26] [26] ZHAO L, ZHENG H J, MA Z Y, et al. Insights into the correlation between strain and electrostrictive coefficient of potassium sodium niobate based ceramics from relaxor structure[J]. Ceram Int, 2023, 49(3): 4614–4621.
[27] [27] JIN L, LUO W T, JING R Y, et al. High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1–x)[Pb(Mg1/3Nb2/3)O3–PbTiO3]–xBa(Zn1/3Nb2/3)O3 solid solutions[J]. Ceram Int, 2019, 45(5): 5518–5524.
[28] [28] YANG S, WANG M W, WANG L, et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics[J]. J Am Ceram Soc, 2022, 105(5): 3322–3330.
[29] [29] ZHENG T, WU J G. Mesoscale origin of dielectric relaxation with superior electrostrictive strain in bismuth ferrite-based ceramics[J]. Mater Horiz, 2020, 7(11): 3011–3020.
[30] [30] ZUO R Z, QI H, FU J, et al. Giant electrostrictive effects of NaNbO3–BaTiO3 lead-free relaxor ferroelectrics[J]. Appl Phys Lett, 2016, 108(23): 232904.
[31] [31] CHENG Z Y, BHARTI V, XU T B, et al. Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers[J]. Sens Actuat A Phys, 2001, 90(1–2): 138–147.
Get Citation
Copy Citation Text
LU Shengguo, ZENG Wenhan, XIAO Bowen, NIU Xiang, WANG Shibin. Analytical Relationship Between Electrostrictive Strain and Applied Electric Field in Relaxor Ferroelectrics[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 792
Special Issue:
Received: Oct. 23, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: