Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 792(2025)

Analytical Relationship Between Electrostrictive Strain and Applied Electric Field in Relaxor Ferroelectrics

LU Shengguo, ZENG Wenhan, XIAO Bowen, NIU Xiang, and WANG Shibin
Author Affiliations
  • Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    References(25)

    [2] [2] GAO X Y, YANG J K, WU J G, et al. Piezoelectric actuators and motors: Materials, designs, and applications[J]. Adv Mater Technol, 2020, 5(1): 1900716.

    [5] [5] NYE J F. Physical properties of crystal[M]. Oxford Science Publications, 1993.

    [6] [6] ZHANG Q M, PAN W Y, JANG S J, et al. The pressure dependence of the dielectric response and its relation to the electrostriction[J]. Ferroelectrics, 1988, 88(1): 147–154.

    [7] [7] UCHINO K, NOMURA S, CROSS L E, et al. Electrostrictive effect in perovskites and its transducer applications[J]. J Mater Sci, 1981, 16(3): 569–578.

    [11] [11] CHENG Z Y, BHARTI V, XU T B, et al. Transverse strain responses in electrostrictive poly(vinylidene fluoride-trifluoroethylene) films and development of a dilatometer for the measurement[J]. J Appl Phys, 1999, 86(4): 2208–2214.

    [12] [12] PIRC R, KUTNJAK Z, BLINC R, et al. Electrocaloric effect in relaxor ferroelectrics[J]. J Appl Phys, 2011, 110(7): 74113.

    [13] [13] SMOLENSKII G A. Physical phenomena in ferroelectrics with diffused phase transition [J]. J Phys Soc Jpn, 1970, 28 (Supl.): 26–37.

    [14] [14] BOKOV A A, YE Z G. Recent progress in relaxor ferroelectrics with perovskite structure[J]. J Mater Sci, 2006, 41(1): 31–52.

    [15] [15] WONGWIRAT T, ZHU Z W, RUI G C, et al. Origins of electrostriction in poly(vinylidene fluoride)-based ferroelectric polymers[J]. Macromolecules, 2020, 53(24): 10942–10954.

    [16] [16] MANDELKERN L. The structure of crystalline polymers[J]. Acc. Chem. Res., 1990, 23(11): 380–386.

    [17] [17] CHEN W, WUNDERLICH B. Nanophase separation of small and large molecules[J]. Macromol Chem Phys, 1999, 200(2): 283–311.

    [18] [18] WUNDERLICH B. Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules[J]. Prog Polym Sci, 2003, 28(3): 383–450.

    [19] [19] ULLAH A, GUL H B, ULLAH A, et al. Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning[J]. APL Mater, 2018, 6(1): 016104.

    [20] [20] DENG A P, WU J J W. Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state[J]. J Eur Ceram Soc, 2021, 41(10): 5147–5154.

    [21] [21] HAN J H, YIN J, WU J G. BNT-based ferroelectric ceramics: Electrical properties modification by Ta2O5 oxide addition[J]. J Am Ceram Soc, 2020, 103(1): 412–422.

    [22] [22] TRAN V D N, HUSSAIN A, HAN H S, et al. Comparison of ferroelectric and strain properties between BaTiO3- and BaZrO3- modified Bi1/2(Na0.82K0.18)1/2TiO3 ceramics[J]. Jpn J Appl Phys, 2012, 51(9S2): 09MD02.

    [23] [23] SHI J, FAN H Q, LIU X, et al. Large Electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions[J]. J Am Ceram Soc, 2014, 97(3): 848–853.

    [24] [24] ZHANG L Y, JING R Y, HUANG Y Y, et al. Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics[J]. J Eur Ceram Soc, 2022, 42(3): 944–953.

    [25] [25] QUAN Q F, FAN H Q, SHEN Q, et al. Large electrostrictive effect and dielectric properties of (K0.5Na0.5)NbO3-BaZrO3 ceramics[J]. J Eur Ceram Soc, 2022, 42(5): 2195–2203.

    [26] [26] ZHAO L, ZHENG H J, MA Z Y, et al. Insights into the correlation between strain and electrostrictive coefficient of potassium sodium niobate based ceramics from relaxor structure[J]. Ceram Int, 2023, 49(3): 4614–4621.

    [27] [27] JIN L, LUO W T, JING R Y, et al. High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1–x)[Pb(Mg1/3Nb2/3)O3–PbTiO3]–xBa(Zn1/3Nb2/3)O3 solid solutions[J]. Ceram Int, 2019, 45(5): 5518–5524.

    [28] [28] YANG S, WANG M W, WANG L, et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics[J]. J Am Ceram Soc, 2022, 105(5): 3322–3330.

    [29] [29] ZHENG T, WU J G. Mesoscale origin of dielectric relaxation with superior electrostrictive strain in bismuth ferrite-based ceramics[J]. Mater Horiz, 2020, 7(11): 3011–3020.

    [30] [30] ZUO R Z, QI H, FU J, et al. Giant electrostrictive effects of NaNbO3–BaTiO3 lead-free relaxor ferroelectrics[J]. Appl Phys Lett, 2016, 108(23): 232904.

    [31] [31] CHENG Z Y, BHARTI V, XU T B, et al. Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers[J]. Sens Actuat A Phys, 2001, 90(1–2): 138–147.

    Tools

    Get Citation

    Copy Citation Text

    LU Shengguo, ZENG Wenhan, XIAO Bowen, NIU Xiang, WANG Shibin. Analytical Relationship Between Electrostrictive Strain and Applied Electric Field in Relaxor Ferroelectrics[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 792

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Oct. 23, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240668

    Topics