Molecular Plant, Volume. 18, Issue 8, 1369(2025)
Fungal extracellular vesicles mediate cross-kingdom trafficking of virulence effectors into plant cells to promote infection
[1] [1] Abubakar, Y.S., Sadiq, I.Z., Aarti, A., Wang, Z., and Zheng, W.(2023). Interplay of transport vesicles during plant-fungal pathogen interaction. Stress Biol.3:35. https://doi.org/10.1007/s44154-023-00114-0.
[2] [2] Andreu, Z., and Yez-M, M.(2014). Tetraspanins in extracellular vesicle formation and function. Front. Immunol.5:442. https://doi.org/10.3389/fimmu.2014.00442.
[3] [3] Asai, S., and Shirasu, K.(2015). Plant cells under siege: plant immune system versus pathogen effectors. Curr. Opin. Plant Biol.28:1-8. https://doi.org/10.1016/j.pbi.2015.08.008.
[4] [4] Bali, S., and Gleason, C.(2024). Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. Mol Plant Microbe In37:179-189. https://doi.org/10.1094/Mpmi-09-23-0124-Fi.
[5] [5] Bielska, E., Sisquella, M.A., Aldeieg, M., Birch, C., O'Donoghue, E.J., and May, R.C.(2018). Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat. Commun.9:1556. https://doi.org/10.1038/S41467-018-03991-6.
[6] [6] Bleackley, M.R., Samuel, M., Garcia-Ceron, D., McKenna, J.A., Lowe, R.G.T., Pathan, M., Zhao, K., Ang, C.S., Mathivanan, S., and Anderson, M.A.(2019). Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants. Front. Plant Sci.10:1610. https://doi.org/10.3389/fpls.2019.01610.
[7] [7] Buck, A.H., Coakley, G., Simbari, F., McSorley, H.J., Quintana, J.F., Le Bihan, T., Kumar, S., Abreu-Goodger, C., Lear, M., Harcus, Y., et al.(2014). Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat. Commun.5:5488. https://doi.org/10.1038/ncomms6488.
[8] [8] Cai, Q., Halilovic, L., Shi, T., Chen, A., He, B., Wu, H., and Jin, H.(2023). Extracellular vesicles: cross-organismal RNA trafficking in plants, microbes, and mammalian cells. Extracell. Vesicles Circ. Nucl. Acids4:262-282. https://doi.org/10.20517/evcna.2023.10.
[9] [9] Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.M., Palmquist, J., Huang, S.D., and Jin, H.(2018). Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science360:1126-1129. https://doi.org/10.1126/science.aar4142.
[10] [10] Cai, Q., He, B., Wang, S., Fletcher, S., Niu, D., Mitter, N., Birch, P.R.J., and Jin, H.(2021). Message in a bubble: Shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu. Rev. Plant Biol.72:497-524. https://doi.org/10.1146/annurev-arplant-081720-010616.
[11] [11] Clough, S.J., and Bent, A.F.(1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16:735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x.
[12] [12] Colombo, M., Raposo, G., and Thry, C.(2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol.30:255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326.
[13] [13] Costa, J.H., Bazioli, J.M., Barbosa, L.D., Dos Santos Junior, P.L.T., Reis, F.C.G., Klimeck, T., Crnkovic, C.M., Berlinck, R.G.S., Sussulini, A., Rodrigues, M.L., et al.(2021). Phytotoxic Tryptoquialanines Produced In Vivo by Penicillium digitatum Are Exported in Extracellular Vesicles. mBio12:e03393-20. https://doi.org/10.1128/mBio.03393-20.
[14] [14] Cui, H., Tsuda, K., and Parker, J.E.(2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol.66:487-511. https://doi.org/10.1146/annurev-arplant-050213-040012.
[15] [15] De Vallee, A., Dupuy, J.W., Moriscot, C., Gallet, B., Vanderperre, S., Guignard, G., Rascle, C., Calvar, G., Malbert, B., Gillet, F.X., et al.(2023). Extracellular Vesicles of the Plant Pathogen Botrytis cinerea. J. Fungi (Basel)9:495. https://doi.org/10.3390/jof9040495.
[16] [16] Dejonghe, W., Sharma, I., Denoo, B., De Munck, S., Lu, Q., Mishev, K., Bulut, H., Mylle, E., De Rycke, R., Vasileva, M., et al.(2019). Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat. Chem. Biol.15:641-649. https://doi.org/10.1038/s41589-019-0262-1.
[17] [17] Deng, W., Marshall, N.C., Rowland, J.L., McCoy, J.M., Worrall, L.J., Santos, A.S., Strynadka, N.C.J., and Finlay, B.B.(2017). Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol.15:323-337. https://doi.org/10.1038/nrmicro.2017.20.
[18] [18] Escobar-Nio, A., Harzen, A., Stolze, S.C., Nakagami, H., and Fernndez-Acero, F.J.(2023). The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process. J. Fungi9:872. https://doi.org/10.3390/jof9090872.
[19] [19] Escoll, P., Mondino, S., Rolando, M., and Buchrieser, C.(2016). Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat. Rev. Microbiol.14:5-19. https://doi.org/10.1038/nrmicro.2015.1.
[20] [20] Fan, L., Hao, H., Xue, Y., Zhang, L., Song, K., Ding, Z., Botella, M.A., Wang, H., and Lin, J.(2013). Dynamic analysis of Arabidopsis AP2 sigma subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development140:3826-3837. https://doi.org/10.1242/dev.095711.
[21] [21] Franceschetti, M., Maqbool, A., Jimenez-Dalmaroni, M.J., Pennington, H.G., Kamoun, S., and Banfield, M.J.(2017). Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol. Mol. Biol. Rev.81:e00066-16. https://doi.org/10.1128/MMBR.00066-16.
[22] [22] Francis, A., Ghosh, S., Tyagi, K., Prakasam, V., Rani, M., Singh, N.P., Pradhan, A., Sundaram, R.M., Priyanka, C., Laha, G.S., et al.(2023). Evolution of pathogenicity-associated genes in AG1-IA by genome duplication and transposon-mediated gene function alterations. BMC Biol.21:15. https://doi.org/10.1186/s12915-023-01526-0.
[23] [23] Garcia-Ceron, D., Dawson, C.S., Faou, P., Bleackley, M.R., and Anderson, M.A.(2021a). Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Proteomics21:e2000240. https://doi.org/10.1002/pmic.202000240.
[24] [24] Garcia-Ceron, D., Truong, T.T., Ratcliffe, J., McKenna, J.A., Bleackley, M.R., and Anderson, M.A.(2023). Metabolomic Analysis of Extracellular Vesicles from the Cereal Fungal Pathogen Fusarium graminearum. J Fungi (Basel)9:507. https://doi.org/10.3390/jof9050507.
[25] [25] Garcia-Ceron, D., Lowe, R.G.T., McKenna, J.A., Brain, L.M., Dawson, C.S., Clark, B., Berkowitz, O., Faou, P., Whelan, J., Bleackley, M.R., and Anderson, M.A.(2021b). Extracellular Vesicles from Fusarium graminearum Contain Protein Effectors Expressed during Infection of Corn. J. Fungi7:977. https://doi.org/10.3390/Jof7110977.
[26] [26] Giraldo, M.C., Dagdas, Y.F., Gupta, Y.K., Mentlak, T.A., Yi, M., Martinez-Rocha, A.L., Saitoh, H., Terauchi, R., Talbot, N.J., and Valent, B.(2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun.4:1996. https://doi.org/10.1038/ncomms2996.
[27] [27] Halder, L.D., Babych, S., Palme, D.I., Mansouri-Ghahnavieh, E., Ivanov, L., Ashonibare, V., Langenhorst, D., Prusty, B., Rambach, G., Wich, M., et al.(2021). Candida albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth. mBio13:e0356321. https://doi.org/10.1128/mbio.03563-21.
[28] [28] Han, L.B., Li, Y.B., Wang, F.X., Wang, W.Y., Liu, J., Wu, J.H., Zhong, N.Q., Wu, S.J., Jiao, G.L., Wang, H.Y., and Xia, G.X.(2019). The Cotton Apoplastic Protein CRR1 Stabilizes Chitinase 28 to Facilitate Defense against the Fungal Pathogen Verticillium dahliae. Plant Cell31:520-536. https://doi.org/10.1105/tpc.18.00390.
[29] [29] He, B., Wang, H., Liu, G., Chen, A., Calvo, A., Cai, Q., and Jin, H.(2023). Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. Nat. Commun.14:4383.
[30] [30] He, B., Cai, Q., Qiao, L., Huang, C.Y., Wang, S., Miao, W., Ha, T., Wang, Y., and Jin, H.(2021). RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat. Plants7:342-352. https://doi.org/10.1038/s41477-021-00863-8.
[31] [31] Hemler, M.E.(2005). Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Bio.6:801-811. https://doi.org/10.1038/nrm1736.
[32] [32] Hill, E.H., and Solomon, P.S.(2020). Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol. Biotechnol.7:13. https://doi.org/10.1186/s40694-020-00103-2.
[33] [33] Huang, Y., Wang, S., Cai, Q., and Jin, H.(2021). Effective methods for isolation and purification of extracellular vesicles from plants. J. Integr. Plant Biol.63:2020-2030. https://doi.org/10.1111/jipb.13181.
[34] [34] Huang, Y.F., Li, W., Liu, T.G., Lin, X.L., Xia, Y.H., Zhu, W.J., Jin, H.L., and Cai, Q.(2025). Rice extracellular vesicles send defense proteins into fungus Rhizoctonia solani to reduce disease. Dev. Cell60:1168. https://doi.org/10.1016/j.devcel.2024.12.020.
[35] [35] Hurwitz, S.N., Conlon, M.M., Rider, M.A., Brownstein, N.C., and Meckes, D.G.(2016). Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J. Extracell. Vesicles5:31295. https://doi.org/10.3402/Jev.V5.31295.
[36] [36] Jashni, M.K., Dols, I.H.M., Iida, Y., Boeren, S., Beenen, H.G., Mehrabi, R., Collemare, J., and de Wit, P.J.G.M.(2015). Synergistic Action of a Metalloprotease and a Serine Protease from Fusarium oxysporum f. sp. lycopersici Cleaves Chitin-Binding Tomato Chitinases, Reduces Their Antifungal Activity, and Enhances Fungal Virulence. Mol. Plant Microbe Interact.28:996-1008. https://doi.org/10.1094/MPMI-04-15-0074-R.
[37] [37] Jeppesen, D.K., Fenix, A.M., Franklin, J.L., Higginbotham, J.N., Zhang, Q., Zimmerman, L.J., Liebler, D.C., Ping, J., Liu, Q., Evans, R., et al.(2019). Reassessment of exosome composition. Cell177:428-445. https://doi.org/10.1016/j.cell.2019.02.029.
[38] [38] Joffe, L.S., Nimrichter, L., Rodrigues, M.L., and Del Poeta, M.(2016). Potential Roles of Fungal Extracellular Vesicles during Infection. mSphere1:e00099-16. https://doi.org/10.1128/mSphere.00099-16.
[39] [39] Kabbage, M., Yarden, O., and Dickman, M.B.(2015). Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Sci.233:53-60. https://doi.org/10.1016/j.plantsci.2014.12.018.
[40] [40] Kale, S.D., Gu, B., Capelluto, D.G.S., Dou, D., Feldman, E., Rumore, A., Arredondo, F.D., Hanlon, R., Fudal, I., Rouxel, T., et al.(2010). External Lipid PI3P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and Animal Host Cells. Cell142:284-295. https://doi.org/10.1016/j.cell.2010.06.008.
[41] [41] Koeppen, K., Hampton, T.H., Jarek, M., Scharfe, M., Gerber, S.A., Mielcarz, D.W., Demers, E.G., Dolben, E.L., Hammond, J.H., Hogan, D.A., and Stanton, B.A.(2016). A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog.12:e1005672. https://doi.org/10.1371/journal.ppat.1005672.
[42] [42] Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J.P., Primdal-Bengtson, B., Dingli, F., Loew, D., Tkach, M., and Thry, C.(2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA113:E968-E977. https://doi.org/10.1073/pnas.1521230113.
[43] [43] Kwon, S., Rupp, O., Brachmann, A., Blum, C.F., Kraege, A., Goesmann, A., and Feldbrgge, M.(2021). mRNA inventory of extracellular vesicles from Ustilago maydis. J. Fungi7:562. https://doi.org/10.3390/jof7070562.
[44] [44] Lambou, K., Tharreau, D., Kohler, A., Sirven, C., Marguerettaz, M., Barbisan, C., Sexton, A.C., Kellner, E.M., Martin, F., Howlett, B.J., et al.(2008). Fungi have three tetraspanin families with distinct functions. BMC Genom.9:63. https://doi.org/10.1186/1471-2164-9-63.
[45] [45] Li, S., Peng, X., Wang, Y., Hua, K., Xing, F., Zheng, Y., Liu, W., Sun, W., and Wei, S.(2019). The Effector AGLIP1 in Rhizoctonia solani AG1 IA Triggers Cell Death in Plants and Promotes Disease Development Through Inhibiting PAMP-Triggered Immunity in Arabidopsis thaliana. Front. Microbiol.10:2228. https://doi.org/10.3389/fmicb.2019.02228.
[46] [46] Li, X., and Pan, S.Q.(2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Sci. Adv.3:e1601528. https://doi.org/10.1126/sciadv.1601528.
[47] [47] Liebana-Jordan, M., Brotons, B., Falcon-Perez, J.M., and Gonzalez, E.(2021). Extracellular vesicles in the fungi kingdom. Int. J. Mol. Sci.22:7221. https://doi.org/10.3390/Ijms22137221.
[48] [48] Liu, J., Gong, P., Lu, R., Lozano-Durn, R., Zhou, X., and Li, F.(2024a). Chloroplast immunity: A cornerstone of plant defense. Mol. Plant17:686-688. https://doi.org/10.1016/j.molp.2024.03.012.
[49] [49] Liu, N., Hou, L., Chen, X., Bao, J., Chen, F., Cai, W., Zhu, H., Wang, L., and Chen, X.(2024). Arabidopsis TETRASPANIN8 mediates exosome secretion and glycosyl inositol phosphoceramide sorting and trafficking. Plant Cell36:626-641. https://doi.org/10.1093/plcell/koad285.
[50] [50] Liu, X.F., Zhao, H.H., Yuan, M.Y., Li, P.Y., Xie, J.T., Fu, Y.P., Li, B., Yu, X., Chen, T., Lin, Y., et al.(2024b). An effector essential for virulence of necrotrophic fungi targets plant HIRs to inhibit host immunity. Nature Commun.15:9391. https://doi.org/10.1038/s41467-024-53725-0.
[51] [51] Lo Presti, L., and Kahmann, R.(2017). How filamentous plant pathogen effectors are translocated to host cells. Curr. Opin. Plant Biol.38:19-24. https://doi.org/10.1016/j.pbi.2017.04.005.
[52] [52] Ma, L., Lukasik, E., Gawehns, F., and Takken, F.L.W.(2012). The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Methods Mol. Biol.835:61-74. https://doi.org/10.1007/978-1-61779-501-5_4.
[53] [53] Martins, S.D., Szwarc, P., Goldenberg, S., and Alves, L.R.(2019). Extracellular vesicles in fungi: composition and functions. Curr. Top Microbiol.422:45-59. https://doi.org/10.1007/82_2018_141.
[54] [54] Mathieu, M., Martin-Jaular, L., Lavieu, G., and Thry, C.(2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol.21:9-17. https://doi.org/10.1038/s41556-018-0250-9.
[55] [55] Mathivanan, S., Ji, H., and Simpson, R.J.(2010). Exosomes: extracellular organelles important in intercellular communication. J. Proteomics73:1907-1920. https://doi.org/10.1016/j.jprot.2010.06.006.
[56] [56] Mills, J., Gebhard, L.J., Schubotz, F., Shevchenko, A., Speth, D.R., Liao, Y., Duggin, I.G., Marchfelder, A., and Erdmann, S.(2024). Extracellular vesicle formation in Euryarchaeota is driven by a small GTPase. Proc. Natl. Acad. Sci. USA121:e2311321121. https://doi.org/10.1073/pnas.2311321121.
[57] [57] Naumann, T.A., Naldrett, M.J., and Price, N.P.J.(2020). Kilbournase, a protease-associated domain subtilase secreted by the fungal corn pathogen Stenocarpella maydis. Fungal Genet. Biol.141:103399. https://doi.org/10.1016/j.fgb.2020.103399.
[58] [58] Nishimura, A., Aichi, I., and Matsuoka, M.(2006). A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc.1:2796-2802. https://doi.org/10.1038/nprot.2006.469.
[59] [59] Niu, X., Yamamoto, N., Yang, G., Lin, H., Jiang, L., Liu, Y., and Zheng, A.(2023). A small secreted protein, RsMf8HN, in rhizoctonia solani triggers plant immune response, which interacts with rice OsHIPP28. Microbiol. Res.266:127219. https://doi.org/10.1016/j.micres.2022.127219.
[60] [60] Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J., and Schweizer, P.(2010). HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell22:3130-3141. https://doi.org/10.1105/tpc.110.077040.
[61] [61] O'Brien, K., Breyne, K., Ughetto, S., Laurent, L.C., and Breakefield, X.O.(2020). RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol.21:585-606. https://doi.org/10.1038/s41580-020-0251-y.
[62] [62] Oliveira-Garcia, E., Yan, X., Oses-Ruiz, M., de Paula, S., and Talbot, N.J.(2024). Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. New Phytol.241:1007-1020. https://doi.org/10.1111/nph.19446.
[63] [63] Oliveira-Garcia, E., Tamang, T.M., Park, J., Dalby, M., Martin-Urdiroz, M., Rodriguez Herrero, C., Vu, A.H., Park, S., Talbot, N.J., and Valent, B.(2023). Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. Plant Cell35:2527-2551. https://doi.org/10.1093/plcell/koad094.
[64] [64] Oliver, R.P., Friesen, T.L., Faris, J.D., and Solomon, P.S.(2012). Stagonospora nodorum: from pathology to genomics and host resistance. Annu. Rev. Phytopathol.50:23-43. https://doi.org/10.1146/annurev-phyto-081211-173019.
[65] [65] Qiao, L., Lan, C., Capriotti, L., Ah-Fong, A., Heller, J.Z., H., Glass, N.L., Judelson, H.S., Mezzetti, B., Niu, D., and Jin, H.(2020). Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J.9:1756-1768.
[66] [66] Qin, S., Li, W., Zeng, J., Huang, Y., and Cai, Q.(2024). Rice tetraspanins express in specific domains of diverse tissues and regulate plant architecture and root growth. Plant J.117:892-908. https://doi.org/10.1111/tpj.16536.
[67] [67] Rajarammohan, S.(2021). Redefining Plant-Necrotroph Interactions: The Thin Line Between Hemibiotrophs and Necrotrophs. Front. Microbiol.12:673518. https://doi.org/10.3389/fmicb.2021.673518.
[68] [68] Reynolds, G.D., August, B., and Bednarek, S.Y.(2014). Preparation of enriched plant clathrin-coated vesicles by differential and density gradient centrifugation. Methods Mol. Biol.1209:163-177. https://doi.org/10.1007/978-1-4939-1420-3_13.
[69] [69] Rizzo, J., Rodrigues, M.L., and Janbon, G.(2020). Extracellular vesicles in fungi: past, present, and future perspectives. Front. Cell. Infect. Microbiol.10:346. https://doi.org/10.3389/fcimb.2020.00346.
[70] [70] Robatzek, S.(2007). Vesicle trafficking in plant immune responses. Cell. Microbiol.9:1-8. https://doi.org/10.1111/j.1462-5822.2006.00829.x.
[71] [71] Rutter, B.D., Chu, T.T.H., Dallery, J.F., Zajt, K.K., O'Connell, R.J., and Innes, R.W.(2022). The development of extracellular vesicle markers for the fungal phytopathogen Colletotrichum higginsianum. J. Extracell. Vesicles11:e12216. https://doi.org/10.1002/jev2.12216.
[72] [72] Rybak, K., and Robatzek, S.(2019). Functions of extracellular vesicles in immunity and virulence. Plant Physiol.179:1236-1247. https://doi.org/10.1104/pp.18.01557.
[73] [73] Silva, G.R., de Pina Cavalcanti, F., Melo, R.M., Cintra, E., Lima, E.M., Hamann, P.R.V., do Vale, L.H.F., Ulhoa, C.J., Almeida, F., and Noronha, E.F.(2024). Extracellular vesicles from the mycoparasitic fungus Trichoderma harzianum. Antonie Leeuwenhoek117:64. https://doi.org/10.1007/s10482-024-01958-w.
[74] [74] Szempruch, A.J., Sykes, S.E., Kieft, R., Dennison, L., Becker, A.C., Gartrell, A., Martin, W.J., Nakayasu, E.S., Almeida, I.C., Hajduk, S.L., and Harrington, J.M.(2016). Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia. Cell164:246-257. https://doi.org/10.1016/j.cell.2015.11.051.
[75] [75] Thery, C., Amigorena, S., Raposo, G., and Clayton, A.(2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol.3:3-22. https://doi.org/10.1002/0471143030.cb0322s30.
[76] [76] Umeda, R., Satouh, Y., Takemoto, M., Nakada-Nakura, Y., Liu, K., Yokoyama, T., Shirouzu, M., Iwata, S., Nomura, N., Sato, K., et al.(2020). Structural insights into tetraspanin CD9 function. Nat. Commun.11:1606. https://doi.org/10.1038/s41467-020-15459-7.
[77] [77] van Niel, G., D'Angelo, G., and Raposo, G.(2018). Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol.19:213-228. https://doi.org/10.1038/nrm.2017.125.
[78] [78] van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L., Saftig, P., Marks, M.S., Rubinstein, E., and Raposo, G.(2011). The Tetraspanin CD63 Regulates ESCRT-Independent and -Dependent Endosomal Sorting during Melanogenesis. Dev. Cell21:708-721. https://doi.org/10.1016/j.devcel.2011.08.019.
[79] [79] Vargas, G., Rocha, J.D.B., Oliveira, D.L., Albuquerque, P.C., Frases, S., Santos, S.S., Nosanchuk, J.D., Gomes, A.M.O., Medeiros, L.C.A.S., Miranda, K., et al.(2015). Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell. Microbiol.17:389-407. https://doi.org/10.1111/cmi.12374.
[80] [80] Vieira, P., and Gleason, C.(2019). Plant-parasitic nematode effectors - insights into their diversity and new tools for their identification. Curr. Opin. Plant Biol.50:37-43. https://doi.org/10.1016/j.pbi.2019.02.007.
[81] [81] Wang, C., Yan, X., Chen, Q., Jiang, N., Fu, W., Ma, B., Liu, J., Li, C., Bednarek, S.Y., and Pan, J.(2013). Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell25:499-516. https://doi.org/10.1105/tpc.112.108373.
[82] [82] Wang, H., Oliveira-Garcia, E., Boevink, P.C., Talbot, N.J., Birch, P.R.J., and Valent, B.(2023a). Filamentous pathogen effectors enter plant cells via endocytosis. Trends Plant Sci.28:1214-1217. https://doi.org/10.1016/j.tplants.2023.07.015.
[83] [83] Wang, H., Wang, S., Wang, W., Xu, L., Welsh, L.R.J., Gierlinski, M., Whisson, S.C., Hemsley, P.A., Boevink, P.C., and Birch, P.R.J.(2023b). Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. Plant Cell35:2504-2526. https://doi.org/10.1093/plcell/koad069.
[84] [84] Wang, M., Weiberg, A., Lin, F.M., Thomma, B.P.H.J., Huang, H.D., and Jin, H.(2016). Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants2:16151. https://doi.org/10.1038/nplants.2016.151.
[85] [85] Wang, S., Boevink, P.C., Welsh, L., Zhang, R., Whisson, S.C., and Birch, P.R.J.(2017). Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways. New Phytol.216:205-215. https://doi.org/10.1111/nph.14696.
[86] [86] Wang, S.M., He, B.Y., Wu, H.T., Cai, Q., Ramrez-Snchez, O., Abreu-Goodger, C., Birch, P.R.J., and Jin, H.L.(2024). Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. Cell Host Microbe32:93-105. https://doi.org/10.1016/j.chom.2023.11.020.
[87] [87] Wang, Y., Pruitt, R.N., Nrnberger, T., and Wang, Y.(2022). Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol.20:449-464. https://doi.org/10.1038/s41579-022-00710-3.
[88] [88] Wang, Z., Zeng, J., Deng, J., Hou, X., Zhang, J., Yan, W., and Cai, Q.(2023c). Pathogen-Derived Extracellular Vesicles: Emerging Mediators of Plant-Microbe Interactions. Mol. Plant Microbe Interact.36:218-227. https://doi.org/10.1094/MPMI-08-22-0162-FI.
[89] [89] Wei, M., Wang, A., Liu, Y., Ma, L., Niu, X., and Zheng, A.(2020). Identification of the Novel Effector RsIA_NP8 in Rhizoctonia solani AG1 IA That Induces Cell Death and Triggers Defense Responses in Non-Host Plants. Front. Microbiol.11:1115. https://doi.org/10.3389/fmicb.2020.01115.
[90] [90] Xiaofan Liu, Y.H., Chen, W., Jiang, D., and Cheng, J.(2025). Functions and Mechanisms of Secreted Proteinaceous Effectors of Broad-Host-Range Necrotrophic Fungal Pathogens. Annu. Rev. Phytopathol.63:■■-■■. https://doi.org/10.1146/annurev-phyto-121323-020233.
[91] [91] Xu, L., Li, G., Jiang, D., and Chen, W.(2018). Sclerotinia sclerotiorum: An Evaluation of Virulence Theories. Annu. Rev. Phytopathol.56:311-338. https://doi.org/10.1146/annurev-phyto-080417-050052.
[92] [92] Zhang, D., Lin, R., Yamamoto, N., Wang, Z., Lin, H., Okada, K., Liu, Y., Xiang, X., Zheng, T., Zheng, H., et al.(2024). Mitochondrial-targeting effector RsIA_CtaG/Cox11 in Rhizoctonia solani AG-1 IA has two functions: plant immunity suppression and cell death induction mediated by a rice cytochrome c oxidase subunit. Mol. Plant Pathol.25:e13397. https://doi.org/10.1111/mpp.13397.
[93] [93] Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., Ding, L., Wang, Y., Chen, Y., Liu, Y., et al.(2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun.4:1424. https://doi.org/10.1038/Ncomms2427.
[94] [94] Zhu, J., Qiao, Q., Sun, Y., Xu, Y., Shu, H., Zhang, Z., Liu, F., Wang, H., Ye, W., Dong, S., et al.(2023). Divergent sequences of tetraspanins enable plants to specifically recognize microbe-derived extracellular vesicles. Nat. Commun.14:4877. https://doi.org/10.1038/s41467-023-40623-0.
Get Citation
Copy Citation Text
Wang Zhangying, Li Wei, Kang Guangren, Deng Jiliang, Qin Shanshan, Cai Qiang. Fungal extracellular vesicles mediate cross-kingdom trafficking of virulence effectors into plant cells to promote infection[J]. Molecular Plant, 2025, 18(8): 1369
Category:
Received: Dec. 11, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: