Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1037001(2025)

Trans-YOLO: Improved YOLOv8 with RT-DETR Decoder & Head for Infrared Small Target Detection

Jiannan Liu... Shuxian Liu, Hankiz Yilahun and Askar Hamdulla* |Show fewer author(s)
Author Affiliations
  • Department of Computer Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang , China
  • show less
    Figures & Tables(16)
    Network architecture schematic of RT-DETR
    Network structure diagram of proposed algorithm
    Structure diagrams of the three modules. (a) Network structure diagram of C2f; (b) structure diagram of RGCSPELAN module; (c) network structure diagram of RepConv
    Structure diagram of CAFM
    CAFMFusion mechanism
    Detection performance of the BiFPN and CAFMFusion across different datasets. (a)‒(c) BiFPN; (d)‍‒‍(f) CAFMFusion
    Evaluation metrics comparing Trans-YOLO with RT-DETR-r18 and YOLOv8 on IRSTD-1K and NUDT-SIRST datasets. (a)‒(d) Precision, recall, mAP@50, and mAP@50∶95 on dataset NUDT-SIRST; (e)‒(h) precision, recall, mAP@50, and mAP@50∶95 on dataset IRSTD-1K
    Comparison of different target detection algorithms on infrared images with Trans-YOLO detection results in multiple scenes
    Impact of each improved module on detection results
    • Table 1. Comparative experiments of RGCSPELAN module with common blocks

      View table

      Table 1. Comparative experiments of RGCSPELAN module with common blocks

      BlockMean time /sFPS /frame/sFLOPs /GbitParameter /103
      C30.00114875.54.83295.6
      ELAN0.00143698.68.05492.2
      C2f0.00128780.17.51459.5
      RepNCSPELAN0.00224446.43.69226.1
      RGCSPELAN0.00112891.43.56217.9
    • Table 2. Introduction of publicly available infrared small target datasets used in the experiments

      View table

      Table 2. Introduction of publicly available infrared small target datasets used in the experiments

      ClassDatasetNumber of sampleLabel formDataset introduction
      Training setTest set
      Single frameNUDT-SIRST1061265Anchor, maskDataset contains multiple target types, rich target sizes, and different clutter backgrounds
      IRSTD-1K800201Anchor, maskDataset contains objects of different shapes and sizes, rich backgrounds, and accurate pixel-level annotations
      SIRST34186Anchor, maskFirst real infrared small target dataset with high-quality images and labels
    • Table 3. Hyperparameter settings for experiments

      View table

      Table 3. Hyperparameter settings for experiments

      HyperparameterDetail
      Epoch450
      Image size /(pixel×pixel)640×640
      Batch size16
      OptimizerAdamW
      Initial LR0.01
      Patience80
    • Table 4. Comparison of performance metrics of the BiFPN and CAFMFusion on the public datasets

      View table

      Table 4. Comparison of performance metrics of the BiFPN and CAFMFusion on the public datasets

      AlgorithmNUDT-SIRSTSIRSTIRSTD-1K
      mAP@50F1-scoremAP@50F1-scoremAP@50F1-score
      Detr+BiFPN0.9530.9400.8340.8700.8110.850
      Detr+CAFMFusion0.9690.9600.8530.8440.8240.840
    • Table 5. Comparison of experimental results of different algorithms on the datasets

      View table

      Table 5. Comparison of experimental results of different algorithms on the datasets

      ModelParameter /103IRSTD-1KNUDT-SIRST
      F1-scoremAP@50PrecisionRecallF1-scoremAP@50PrecisionRecall
      Faster RCNN37.600.6370.734
      MBFormer-YOLO7.100.8360.8940.8260.8470.9400.9790.9820.961
      FCDN4.100.8270.7680.8440.8310.8950.9170.9230.907
      SFM-YOLOv82.830.4990.4620.5320.4710.6040.5790.6210.589
      YOLOv52.000.8230.8200.8390.8170.9340.9560.9500.920
      YOLOv736.400.8440.8110.8620.8090.9200.9290.9110.932
      YOLOv83.000.7650.7840.8340.6870.9300.9650.9200.928
      YOLOv920.000.7830.7740.7990.7710.9300.9600.9260.936
      YOLOv102.600.7350.7300.7170.7550.9210.9580.9060.940
      RT-DETR-r1819.000.8070.7830.8130.8020.9900.9920.9900.991
      Trans-YOLO5.000.8710.8610.8650.8780.9920.9950.9940.991
    • Table 6. Experimental results of improved algorithm on the SIRST dataset and its comparison with other algorithms

      View table

      Table 6. Experimental results of improved algorithm on the SIRST dataset and its comparison with other algorithms

      AlgorithmPrecisionRecallmAP@50mAP@95Parameter /103F1-score
      SSD0.7170.6600.7320.2917.70.689
      YOLOHG-LAD0.8720.8140.8150.2991.70.840
      MBFormer-YOLO0.8390.8280.8870.3927.10.836
      FCDN0.8410.8190.8010.3034.10.827
      SFM-YOLOv80.6440.6750.5710.2202.80.499
      YOLOv50.8520.8340.8470.3242.00.823
      YOLOv70.8270.8170.8130.31136.40.844
      YOLOv80.6880.7430.7290.2843.00.720
      YOLOv90.8200.8450.8310.30520.00.870
      YOLOv100.7300.7460.7210.2952.60.737
      Trans-YOLO0.8280.8170.8660.3945.90.860
    • Table 7. Ablation experiments on dataset IRSTD-1K and dataset NUDT-SIRST

      View table

      Table 7. Ablation experiments on dataset IRSTD-1K and dataset NUDT-SIRST

      AlgorithmIRSTD-1KNUDT-SIRST
      mAP@50PrecisionRecallmAP@50PrecisionRecall
      YOLOv80.7840.8340.6870.9650.9200.928
      YOLOv8+Decoder &Head0.8260.8320.8310.9910.9780.975
      YOLOv8+RGCSPELAN0.7990.7840.8020.9850.9660.948
      YOLOv8+CAFMFusion0.8040.8120.8240.9940.9940.995
      YOLOv8+RGCSPELAN+CAFMFusion0.8330.8280.8820.9810.9680.942
      YOLOv8+Decoder &Head+RGCSPELAN+CAFMFusion0.8610.8650.8780.9950.9940.991
    Tools

    Get Citation

    Copy Citation Text

    Jiannan Liu, Shuxian Liu, Hankiz Yilahun, Askar Hamdulla. Trans-YOLO: Improved YOLOv8 with RT-DETR Decoder & Head for Infrared Small Target Detection[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1037001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Aug. 27, 2024

    Accepted: Oct. 28, 2024

    Published Online: May. 13, 2025

    The Author Email: Askar Hamdulla (askar@xju.edu.cn)

    DOI:10.3788/LOP241915

    CSTR:32186.14.LOP241915

    Topics