Acta Optica Sinica, Volume. 45, Issue 6, 0628009(2025)

Simulation and Error Analysis of Spaceborne Carbon Monitoring with Supercontinuum Lidar

Hongyi Yin1,2, Yiguo Pang1,2, Ming Li3, Shuang Gao1, Longfei Tian1, Denghui Hu1, and Guohua Liu1,2、*
Author Affiliations
  • 1Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    Figures & Tables(15)
    Overall schematic diagram for construction and evaluation of SC lidar model
    Supercontinuum spectrum used in this study
    Lunar reflectance based on ROLO model. (a) Lunar reflectance fit as an exponential function of phase angle g; (b) a full spectrum of lunar reflectance obtained through linear interpolation
    Spectra of nighttime lights. (a) Normalized spectra of three typical light types; (b) characteristic nighttime lights radiance spectra of Las Vegas and Guangzhou
    Simulation results of (a) SC lidar backscattered signal power, (b) solar background radiation power, and (c) lunar background radiation power under baseline condition
    Impact of varied atmospheric parameters on SNR (1). (a) Atmosphere model; (b) SZA; (c) aerosol, day; (d) aerosol, night
    Impact of varied atmospheric parameters on SNR (2). (a) Dark current density, day; (b) dark current density, night; (c) reflectance, day; (d) reflectance, night
    Three selected absorption bands. (a) Band A, including O2 absorption band 0.76 μm; (b) band B, including CO2 absorption bands 1.57 μm, 1.61μm and CH4 absorption band 1.64 μm; (c) band C, including CO2 absorption bands 2.01 μm, 2.06 μm and CH4 absorption band 2.3 μm
    Maximum detecting altitude fit as a function of total peak power of SC lidar in baseline condition. (a) Band A (750~770 nm); (b) band B (1560~1750 nm); (c) band C (2000~2400 nm)
    XCO2 retrieval errors with varying SC lidar total peak power and dark current scenarios
    • Table 1. Parameters of SC lidar used in this study

      View table

      Table 1. Parameters of SC lidar used in this study

      CategoryParameterValue
      Laser transmitter18Spectral range /nm400‒2400
      Total power /W2
      Pulse duration /ns1
      Repetition rate /MHz20
      Total power stability /%±1
      Divergence angle3 /mrad0.1
      Telescope3Overall optical efficiency /%70
      Diameter /m1
      DetectorField of view (FOV)3 /mrad0.2
      Electronic bandwidth19 /MHz3
      Dark current density19 /(fA/Hz160
      Quantum efficiency19 /%80
      Internal gain209
      Excess noise factor203.2
    • Table 2. Percentile values of three selected regions

      View table

      Table 2. Percentile values of three selected regions

      RegionPercentile value
      Max1st10th50th70th100th
      North China749.739.34.10.70.50.0
      East US961.236.72.80.50.00.0
      Xizang, China172.60.80.00.00.00.0
    • Table 3. Spectral averaged derivatives of various current terms with respect to total noise current at an altitude of 120 km

      View table

      Table 3. Spectral averaged derivatives of various current terms with respect to total noise current at an altitude of 120 km

      TimeCurrent term xiExpressionSpectral average value /Anm-1Spectral averaged derivative IN/xi
      DaySolar signalPsλMR3.24×10-91.04
      Echo signalPrλMR7.79×10-130.04
      Dark currentiDB2.77×10-100.73
      NightLunar signalPmλMR1.46×10-141.05
      Nighttime-light signalPNTLλMR7.91×10-141.05
      Echo signalPrλMR7.79×10-130.05
      Dark currentiDB2.77×10-100.99
    • Table 4. Minimum total peak power required for three bands assuming an orbital altitude of 500 km (daytime)

      View table

      Table 4. Minimum total peak power required for three bands assuming an orbital altitude of 500 km (daytime)

      SNR

      threshold /dB

      Minimum total peak power/ (107 W)
      Band ABand BBand C
      30°70°89°30°70°89°30°70°89°
      23.321.280.200.530.220.051.880.880.36
      56.812.670.421.090.470.113.941.880.77
      1023.509.681.803.891.780.5014.707.503.34
    • Table 5. Minimum total peak power required for three bands assuming an orbital altitude of 500 km (nighttime)

      View table

      Table 5. Minimum total peak power required for three bands assuming an orbital altitude of 500 km (nighttime)

      SNR

      threshold/dB

      Minimum total peak power /(106 W)
      Band ABand BBand C
      160 fA/Hz20 fA/Hz160 fA/Hz20 fA/Hz160 fA/Hz20 fA/Hz
      21.370.300.460.103.460.73
      53.040.941.010.327.512.29
      1013.408.384.522.8232.6020.50
    Tools

    Get Citation

    Copy Citation Text

    Hongyi Yin, Yiguo Pang, Ming Li, Shuang Gao, Longfei Tian, Denghui Hu, Guohua Liu. Simulation and Error Analysis of Spaceborne Carbon Monitoring with Supercontinuum Lidar[J]. Acta Optica Sinica, 2025, 45(6): 0628009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 20, 2024

    Accepted: Sep. 29, 2024

    Published Online: Mar. 17, 2025

    The Author Email: Guohua Liu (liugh@microsate.com)

    DOI:10.3788/AOS241191

    CSTR:32393.14.AOS241191

    Topics