Chinese Journal of Lasers, Volume. 48, Issue 6, 0602109(2021)

Plastic Gradient Coordination Behavior of Boron Steel/Q235 Steel Laser Welded Joint Under Welding with Synchronous Thermal Field

Guangtao Zhou1,2、*, Huachen Li1, Fang Liu1, and Hepeng Cui1
Author Affiliations
  • 1Fujian Key Laboratory of Special Energy Manufacturing, College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
  • 2State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    Figures & Tables(18)
    Principle of the welding with synchronous thermal field
    Sampling position of the hot stretch specimen
    Dimensions of the hot stretch specimen. (a) Integral joint; (b) each area of joint
    Surface morphology of the boron steel /Q235 steel laser weld seam under the conventional condition
    Yield strength distribution of the conventional welded joints at different temperatures
    Surface morphology of the boron steel /Q235 steel laser weld seam under 450 ℃ thermal field condition
    Experimental results of the joint as a whole under high temperature tension at 800 ℃. (a) Stress-strain curve; (b) elongation
    Actual picture of the welded joint after being pulled off as a whole. (a) Conventional welding; (b) 300 ℃ thermal field; (c) 450 ℃ thermal field; (d) 600 ℃ thermal field
    Micro morphology of the fracture. (a) Conventional welding; (b) 450 ℃ thermal field
    Stress-strain relationships of the each area of the welded joint. (a) Conventional condition; (b) 300 ℃ thermal field; (c) 450 ℃ thermal field; (d) 600 ℃ thermal field
    Distribution of yield strength of welded joints at 800 ℃
    Physical image of the specimens in each area of the welded joint after being pulled off at 800 ℃. (a) Weld; (b) HAZ of the Q235 steel; (c) HAZ of the boron steel; (d) base material of the Q235 steel; (e) base material of the boron steel
    Microstructure of the boron steel/Q235 steel welded joints under different conditions. (a) Weld area under conventional condition; (b) boron steel HAZ under conventional condition; (c) Q235 steel HAZ under conventional condition; (d) weld area under 600 ℃ thermal field (e) boron steel HAZ under the 600 ℃ thermal field; (f) Q235 steel HAZ under 600 ℃ thermal field
    • Table 1. Mass fraction of elements in materials unit: %

      View table

      Table 1. Mass fraction of elements in materials unit: %

      ElementCMnSiCrMoBPSFe
      B1500HS0.231.350.250.190.040.0030.0150.006other
      Q235 steel0.180.540.26------≤0.045≤0.05other
    • Table 2. Dimensions of the hot stretch specimen unit: mm

      View table

      Table 2. Dimensions of the hot stretch specimen unit: mm

      SymbolRL0LcLdb1b2
      Value25247011031212
    • Table 3. Optimum technological parameters of the boron steel /Q235 steel under conventional condition

      View table

      Table 3. Optimum technological parameters of the boron steel /Q235 steel under conventional condition

      Welding conditionValue
      Average power /W350
      Peak power /kW2.8
      Welding speed /(mm·s-1)2
      Heat input /(J·mm-1)140
      Pulse width /ms10
      Laser frequency /Hz10
    • Table 4. Optimum technological parameters of boron steel /Q235 steel laser welding under welding with synchronous thermal field condition

      View table

      Table 4. Optimum technological parameters of boron steel /Q235 steel laser welding under welding with synchronous thermal field condition

      Temperature ofthermal field /℃Averagepower /WPeakpower /kWWelding speed /(mm·s-1)Heat input /(J·mm-1)Pulse width /msLaserfrequency /Hz
      3003382.72.31171010
      4503102.52.6951010
      6003002.43.3731010
    • Table 5. Results of the high temperature tensile test of integral joints

      View table

      Table 5. Results of the high temperature tensile test of integral joints

      Test temperature /℃Welding conditionTensile strength /MPaElongation /%
      700convention179.51415.83
      300 ℃ thermal field142.87117.50
      450 ℃ thermal field127.28318.43
      600 ℃ thermal field114.98419.09
      Test temperature /℃Welding conditionTensile strength /MPaElongation /%
      750convention122.34225.04
      300 ℃ thermal field97.33227.50
      450 ℃ thermal field85.96428.95
      600 ℃ thermal field78.43729.02
      800convention78.64731.30
      300 ℃ thermal field62.58234.38
      450 ℃ thermal field55.27536.20
      600 ℃ thermal field50.37537.50
      850convention52.93333.41
      300 ℃ thermal field42.13536.70
      450 ℃ thermal field37.46538.60
      600 ℃ thermal field33.91440.03
      900convention48.67133.87
      300 ℃ thermal field38.54637.20
      450 ℃ thermal field32.92039.12
      600 ℃ thermal field30.91440.30
      Room temperatureconvention475.4987.20
      300 ℃ thermal field410.8968.01
      450 ℃ thermal field350.4328.84
      600 ℃ thermal field311.50110.21
    Tools

    Get Citation

    Copy Citation Text

    Guangtao Zhou, Huachen Li, Fang Liu, Hepeng Cui. Plastic Gradient Coordination Behavior of Boron Steel/Q235 Steel Laser Welded Joint Under Welding with Synchronous Thermal Field[J]. Chinese Journal of Lasers, 2021, 48(6): 0602109

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Material Processing

    Received: Jul. 17, 2020

    Accepted: Sep. 4, 2020

    Published Online: Mar. 6, 2021

    The Author Email: Guangtao Zhou (zhouguangtao@hqu.edu.cn)

    DOI:10.3788/CJL202148.0602109

    Topics