Acta Optica Sinica, Volume. 42, Issue 3, 0327008(2022)
Compact Quantum Entangled-Photon Source for Space Platform
[1] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 47, 777-780(1935).
[2] Wu C S, Shaknov I. The angular correlation of scattered annihilation radiation[J]. Physical Review, 77, 136(1950).
[3] Bell J S. On the Einstein Podolsky Rosen paradox[J]. Physics Physique Fizika, 1, 195-200(1964).
[4] Freedman S J, Clauser J F. Experimental test of local hidden-variable theories[J]. Physical Review Letters, 28, 938-941(1972).
[5] Aspect A, Grangier P, Roger G. Experimental tests of realistic local theories via Bell’s theorem[J]. Physical Review Letters, 47, 460-463(1981).
[6] Aspect A, Grangier P, Roger G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities[J]. Physical Review Letters, 49, 91-94(1982).
[7] Aspect A, Dalibard J, Roger G. Experimental test of Bell’s inequalities using time-varying analyzers[J]. Physical Review Letters, 49, 1804-1807(1982).
[8] Weihs G, Jennewein T, Simon C et al. Violation of Bell’s inequality under strict Einstein locality conditions[J]. Physical Review Letters, 81, 5039-5043(1998).
[9] Tittel W, Brendel J, Gisin B et al. Experimental demonstration of quantum correlations over more than 10 km[J]. Physical Review A, 57, 3229-3232(1998).
[10] Rowe M A, Kielpinski D, Meyer V et al. Experimental violation of a Bell’s inequality with efficient detection[J]. Nature, 409, 791-794(2001).
[11] Ansmann M, Wang H, Bialczak R C et al. Violation of Bell’s inequality in Josephson phase qubits[J]. Nature, 461, 504-506(2009).
[12] Giustina M, Mech A, Ramelow S et al. Bell violation using entangled photons without the fair-sampling assumption[J]. Nature, 497, 227-230(2013).
[13] Scheidl T, Ursin R, Kofler J et al. Violation of local realism with freedom of choice[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 19708-19713(2010).
[14] Yin J, Cao Y, Yong H L et al. Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes[J]. Physical Review Letters, 110, 260407(2013).
[15] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017).
[16] Hensen B, Bernien H, Dréau A E et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[J]. Nature, 526, 682-686(2015).
[17] Giustina M, Versteegh M, Wengerowsky S et al. Significant-loophole-free test of Bell’s theorem with entangled photons[J]. Physical Review Letters, 115, 250401(2015).
[18] Shalm L K, Meyer-Scott E, Christensen B G et al. Strong loophole-free test of local realism[J]. Physical Review Letters, 115, 250402(2015).
[19] Rosenfeld W, Burchardt D, Garthoff R et al. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes[J]. Physical Review Letters, 119, 010402(2017).
[20] BIG Bell Test Collaboration. Challenging local realism with human choices[J]. Nature, 557, 212-216(2018).
[21] Cao Y, Li Y H, Zou W J et al. Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon[J]. Physical Review Letters, 120, 140405(2018).
[22] Peng C Z, Yang T, Bao X H et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication[J]. Physical Review Letters, 94, 150501(2005).
[23] Ursin R, Tiefenbacher F, Schmitt-Manderbach T et al. Entanglement-based quantum communication over 144 km[J]. Nature Physics, 3, 481-486(2007).
[24] Cao Y, Liang H, Yin J et al. Entanglement-based quantum key distribution with biased basis choice via free space[J]. Optics Express, 21, 27260-27268(2013).
[25] Yin J, Cao Y, Li Y H et al. Satellite-to-ground entanglement-based quantum key distribution[J]. Physical Review Letters, 119, 200501(2017).
[26] Wengerowsky S, Joshi S K, Steinlechner F et al. An entanglement-based wavelength-multiplexed quantum communication network[J]. Nature, 564, 225-228(2018).
[27] Wengerowsky S, Joshi S K, Steinlechner F et al. Entanglement distribution over a 96-km-long submarine optical fiber[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 6684-6688(2019).
[28] Yin J, Li Y H, Liao S K et al. Entanglement-based secure quantum cryptography over 1, 120 kilometres[J]. Nature, 582, 501-505(2020).
[29] Wengerowsky S, Joshi S K, Steinlechner F et al. Passively stable distribution of polarisation entanglement over 192 km of deployed optical fibre[J]. npj Quantum Information, 6, 5(2020).
[30] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).
[31] Marcikic I, de Riedmatten H, Tittel W et al. Long-distance teleportation of qubits at telecommunication wavelengths[J]. Nature, 421, 509-513(2003).
[32] Ursin R, Jennewein T, Aspelmeyer M et al. Communications: quantum teleportation across the Danube[J]. Nature, 430, 849(2004).
[33] Yin J, Ren J G, Lu H et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 488, 185-188(2012).
[34] Ma X S, Herbst T, Scheidl T et al. Quantum teleportation over 143 kilometres using active feed-forward[J]. Nature, 489, 269-273(2012).
[35] Sun Q C, Mao Y L, Chen S J et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nature Photonics, 10, 671-675(2016).
[36] Ren J G, Xu P, Yong H L et al. Ground-to-satellite quantum teleportation[J]. Nature, 549, 70-73(2017).
[37] Bouwmeester D, Pan J W, Daniell M et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement[J]. Physical Review Letters, 82, 1345-1349(1999).
[38] Sackett C A, Kielpinski D, King B E et al. Experimental entanglement of four particles[J]. Nature, 404, 256-259(2000).
[39] Zhao Z, Chen Y A, Zhang A N et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 430, 54-58(2004).
[40] Hübel H, Hamel D R, Fedrizzi A et al. Direct generation of photon triplets using cascaded photon-pair sources[J]. Nature, 466, 601-603(2010).
[41] Yao X C, Wang T X, Xu P et al. Observation of eight-photon entanglement[J]. Nature Photonics, 6, 225-228(2012).
[42] Wang X L, Chen L K, Li W et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 117, 210502(2016).
[43] Boto A N, Kok P, Abrams D S et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 85, 2733-2736(2000).
[44] Björk G. Sánchez-Soto L L, Söderholm J. Entangled-state lithography: tailoring any pattern with a single state[J]. Physical Review Letters, 86, 4516-4519(2001).
[45] D’Angelo M, Chekhova M V, Shih Y. Two-photon diffraction and quantum lithography[J]. Physical Review Letters, 87, 013602(2001).
[46] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 321, 1463-1465(2008).
[47] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).
[48] Braunstein S L, Pirandola S. Side-channel-free quantum key distribution[J]. Physical Review Letters, 108, 130502(2012).
[49] Lucamarini M, Yuan Z L, Dynes J F et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 557, 400-403(2018).
[50] Chen J P, Zhang C, Liu Y et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 124, 070501(2020).
[51] Chen J P, Zhang C, Liu Y et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas[J]. Nature Photonics, 15, 570-575(2021).
[52] Chen Y A, Zhang Q, Chen T Y et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres[J]. Nature, 589, 214-219(2021).
[53] Yin J, Yong H L, Wu Y P et al. Experimental simulation of quantum entanglement distribution over a high-loss channel[J]. Acta Physica Sinica, 60, 060307(2011).
[54] Kwiat P G, Mattle K, Weinfurter H et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 75, 4337-4341(1995).
[55] Kwiat P G, Waks E, White A G et al. Ultrabright source of polarization-entangled photons[J]. Physical Review A, 60, R773-R776(1999).
[56] Kurtsiefer C, Oberparleiter M, Weinfurter H. High-efficiency entangled photon pair collection in type-II parametric fluorescence[J]. Physical Review A, 64, 023802(2001).
[57] Fiorentino M, Messin G, Kuklewicz C E et al. Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints[J]. Physical Review A, 69, 041801(2004).
[58] Kuklewicz C E, Fiorentino M, Messin G et al. High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter[J]. Physical Review A, 69, 013807(2004).
[59] Fedrizzi A, Herbst T, Poppe A et al. A wavelength-tunable fiber-coupled source of narrowband entangled photons[J]. Optics Express, 15, 15377-15386(2007).
[60] Anwar A, Perumangatt C, Steinlechner F et al. Entangled photon-pair sources based on three-wave mixing in bulk crystals[J]. Review of Scientific Instruments, 92, 041101(2021).
[61] Burnham D C, Weinberg D L. Observation of simultaneity in parametric production of optical photon pairs[J]. Physical Review Letters, 25, 84-87(1970).
[62] Ghosh R, Mandel L. Observation of nonclassical effects in the interference of two photons[J]. Physical Review Letters, 59, 1903-1905(1987).
[63] Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 28, 2631-2654(1992).
[64] Liao S K, Cai W Q, Liu W Y et al. Satellite-to-ground quantum key distribution[J]. Nature, 549, 43-47(2017).
[65] Liao S K, Cai W Q, Handsteiner J et al. Satellite-relayed intercontinental quantum network[J]. Physical Review Letters, 120, 030501(2018).
[66] Tang Z K, Chandrasekara R, Tan Y C et al. Generation and analysis of correlated pairs of photons aboard a nanosatellite[J]. Physical Review Applied, 5, 054022(2016).
[67] Bedington R, Bai X, Truong-Cao E et al. Nanosatellite experiments to enable future space-based QKD missions[J]. EPJ Quantum Technology, 3, 12(2016).
[68] Villar A, Lohrmann A, Bai X L et al. Entanglement demonstration on board a nano-satellite[J]. Optica, 7, 734-737(2020).
[69] Armengol J M P, Furch B, de Matos C J et al. Quantum communications at ESA: towards a space experiment on the ISS[J]. Acta Astronautica, 63, 165-178(2008).
[70] Scheidl T, Wille E, Ursin R. Quantum optics experiments using the international space station: a proposal[J]. New Journal of Physics, 15, 043008(2013).
[71] Jennewein T, Grant C, Choi E et al. The NanoQEY mission: ground to space quantum key and entanglement distribution using a nanosatellite[J]. Proceedings of SPIE, 9254, 925402(2014).
[72] Oi D K L, Ling A, Grieve J A et al. Nanosatellites for quantum science and technology[J]. Contemporary Physics, 58, 25-52(2017).
[73] Chapman J C, Graham T M, Zeitler C K et al. Time-bin and polarization superdense teleportation for space applications[J]. Physical Review Applied, 14, 014044(2020).
[74] Beckert E, de Vries O, Ursin R et al. A space-suitable, high brilliant entangled photon source for satellite based quantum key distribution[J]. Proceedings of SPIE, 10910, 1091016(2019).
[75] Bennink R S. Optimal collinear Gaussian beams for spontaneous parametric down-conversion[J]. Physical Review A, 81, 053805(2010).
[76] Ling A, Lamas-Linares A, Kurtsiefer C. Absolute emission rates of spontaneous parametric down-conversion into single transverse Gaussian modes[J]. Physical Review A, 77, 043834(2008).
[77] Bell J S[M]. Speakable and unspeakable in quantum mechanics, 169-172(2004).
[79] Kent A. Causal quantum theory and the collapse locality loophole[J]. Physical Review A, 72, 012107(2005).
[80] Manasseh G, de Balthasar C, Sanguinetti B et al. Retinal and post-retinal contributions to the quantum efficiency of the human eye revealed by electrical neuroimaging[J]. Frontiers in Psychology, 4, 845(2013).
[81] Liu H Y, Tian X H, Gu C S et al. Drone-based entanglement distribution towards mobile quantum networks[J]. National Science Review, 7, 921-928(2020).
[82] Liu H Y, Tian X H, Gu C S et al. Optical-relayed entanglement distribution using drones as mobile nodes[J]. Physical Review Letters, 126, 020503(2021).
[83] Herrmann H, Yang X, Thomas A et al. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs[J]. Optics Express, 21, 27981-27991(2013).
[84] Vallés A, Hendrych M, Svozilík J et al. Generation of polarization-entangled photon pairs in a Bragg reflection waveguide[J]. Optics Express, 21, 10841-10849(2013).
[85] Autebert C, Bruno N, Martin A et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons[J]. Optica, 3, 143-146(2015).
[86] Vergyris P, Kaiser F, Gouzien E et al. Fully guided-wave photon pair source for quantum applications[J]. Quantum Science and Technology, 2, 024007(2017).
[87] Guo X, Zou C L, Schuck C et al. Parametric down-conversion photon-pair source on a nanophotonic chip[J]. Light: Science & Applications, 6, e16249(2017).
[88] Meyer-Scott E, Prasannan N, Eigner C et al. High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics[J]. Optics Express, 26, 32475-32490(2018).
[89] Atzeni S, Rab A S, Corrielli G et al. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits[J]. Optica, 5, 311-314(2018).
[90] Sun C W, Wu S H, Duan J C et al. Compact polarization-entangled photon-pair source based on a dual-periodically-poled Ti: LiNbO3 waveguide[J]. Optics Letters, 44, 5598-5601(2019).
[91] Ma Z, Chen J Y, Li Z et al. Ultrabright quantum photon sources on chip[J]. Physical Review Letters, 125, 263602(2020).
[92] Xue G T, Niu Y F, Liu X Y et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip[J]. Physical Review Applied, 15, 064059(2021).
Get Citation
Copy Citation Text
Xiaoyan Zhou, Bo Li, Yuhuai Li, Yuan Cao, Juan Yin, Chengzhi Peng. Compact Quantum Entangled-Photon Source for Space Platform[J]. Acta Optica Sinica, 2022, 42(3): 0327008
Category: Quantum Optics
Received: Sep. 13, 2021
Accepted: Dec. 10, 2021
Published Online: Jan. 25, 2022
The Author Email: Yin Juan (yinjuan@ustc.edu.cn)