Remote Sensing Technology and Application, Volume. 39, Issue 1, 11(2024)
Research Progress in Data Fusion of LiDAR and Hyperspectral Imaging Technology
[1] A LE BRIS, N CHEHATA, W OUERGHEMMI et al. Chapter 11 - Decision fusion of remote-sensing data for land cover classification, 341-382(2019).
[2] X YAO, S SUN, X LI et al. 2018.
[3] K HECKEL, M URBAN, P SCHRATZ et al. Predicting forest cover in distinct ecosystems: The potential of multi-source Sentinel-1 and-2 data fusion. Remote Sensing, 12, 302(2020).
[4] Z FENG, L SONG, J DUAN et al. Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and rgb image data fusion. Sensors, 22, 31(2022).
[5] S HE, H SHAO, W XIAN et al. Extraction of abandoned land in hilly areas based on the spatio-temporal fusion of multi-source remote sensing images. Remote Sensing, 13, 3956(2021).
[6] L HAN, C WANG, Q LIU et al. Soil moisture mapping based on multi-source fusion of optical, near-infrared, thermal infrared, and digital elevation model data via the Bayesian maximum entropy framework. Remote Sensing, 12, 3916(2020).
[7] S KAHRAMAN, R BACHER. A comprehensive review of hyperspectral data fusion with LiDAR and sar data. Annual Reviews in Control, 51, 236-253(2021).
[8] H DASHTI, A POLEY, F. GLENN N et al. Regional scale dryland vegetation classification with an integrated LiDAR-hyperspectral approach. Remote Sensing, 11, 2141(2019).
[9] L LIU, N C COOPS, N W AVEN et al. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 200, 170-182(2017).
[10] H QIN, W ZHOU, Y YAO et al. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data. Remote Sensing of Environment, 280, 113143(2022).
[11] T T SANKEY, J MCVAY, T L SWETNAM et al. UAV hyperspectral and LiDAR data and their fusion for arid and semi‐arid land vegetation monitoring. Remote Sensing in Ecology and Conservation, 4, 20-33(2018).
[12] U OKYAY, J TELLING, C L GLENNIE et al. Airborne Lidar change detection: An overview of earth sciences applications. Earth-Science Reviews, 198, 102929(2019).
[13] X LAI, J YANG, Y LI et al. A Building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features. Remote Sensing, 11, 1636(2019).
[14] M J KHAN, H S KHAN, A YOUSAF et al. Modern trends in hyperspectral image analysis: A review. Ieee Access, 6, 14118-14129(2018).
[15] C L NORTON, K HARTFIELD, C D H COLLINS et al. Multi-temporal LiDAR and hyperspectral data fusion for classification of semi-arid woody cover species. Remote Sensing, 14, 2896(2022).
[16] H AHMAD, I DHARMADASA, F ULLAH et al. A Review on C3I systems' security: Vulnerabilities, attacks, and countermeasures. arXiv preprint(2021).
[17] M MANGOLINI. Apport de la fusion d'images satellitaires multicapteurs au niveau pixel en télédétection et photo-interprétation. Université de Nice Sophia-Antipolis(1994).
[18] C POHL, J L VAN GENDEREN. Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, 19, 823-854(1998).
[19] D L HALL, J LLINAS. An introduction to multisensor data fusion. Proceedings of the IEEE, 85, 6-23(1997).
[20] Tao XU, Guoqing YANG, Songcan CHEN. The concept, methods and applications of data fusion. Journal of Nanjing University of Aeronautics & Astronautics, 27, 258-265(1995).
[21] Daxin LIU, Qun LIU, Guisheng YIN et al. Data fusion and artificial neural network in accusation system. Ship Electronic Engineering, 28-30(1997).
[22] Y JIA, L I DEREN, J SUN. Data Fusion Techniques for Multisources Remotely Sensed Imagery. Remote Sensing Technology and Application(2000).
[23] R HANG, Z LI, P GHAMISI et al. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 58, 4939-4950(2020).
[24] M BRELL, K SEGL, L GUANTER et al. 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 200-214(2019).
[25] Liangpei ZHANG, Huanfeng SHEN. Progress and future of remote sensing data fusion. National Remote Sensing Bulletin, 20, 1050-1061(2016).
[26] Wei GONG, Shuo SHI, Biwu CHEN et al. Development and prospect of hyperspectral LiDAR for earth observation. National Remote Sensing Bulletin, 25, 501-513(2021).
[27] J T MUNDT, D R STREUTKER, N F GLENN. Mapping sagebrush distribution using fusion of hyperspectral and LiDAR classifications. Photogrammetric Engineering & Remote Sensing, 72, 47-54(2006).
[28] M DALPONTE, L BRUZZONE, D GIANELLE. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 46, 1416-1427(2008).
[29] K O NIEMANN, G FRAZER, R LOOS et al. 2009.
[30] F PACIFICI, Q DU, S PRASAD. Report on the 2013 IEEE GRSS data fusion contest: Fusion of hyperspectral and LiDAR data[technical committees]. IEEE Geoscience and Remote Sensing Magazine, 1, 36-38(2013).
[31] C DEBES, A MERENTITIS, R HEREMANS et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2405-2418(2014).
[32] W LIAO, R BELLENS, A PIZURICA et al. 2013.
[33] M SHOKR. Retrieval of sea ice geophysical parameters using remote sensing data fusion; proceedings of the Remote Sensing of the Ocean and Sea Ice 2002, F, 2003.
[34] L F ZORAN. Quality evaluation of multiresolution remote sensing images fusion. UPB Sci Bull Series C, 71(2009).
[35] L WALD. Some terms of reference in data fusion. IEEE Transactions on geoscience and remote sensing, 37, 1190-1193(1999).
[36] R GOMEZ. 1999.
[37] S LI, X KANG, L FANG et al. Pixel-level image fusion: A survey of the state of the art. Information Fusion, 33, 100-112(2017).
[38] Z LIU, G XIAO, H LIU et al. Multi-sensor measurement and data fusion. IEEE Instrumentation & Measurement Magazine, 25, 28-36(2022).
[39] B YANG, Z L JING, H T ZHAO. Review of pixel-level image fusion. Journal of Shanghai Jiaotong University (Science), 15, 6-12(2010).
[40] M LI. Dynamic monitoring and evaluation of regional EE quality based on multi-source remote sensing data. Academic Journal of Environment & Earth Science, 4(2022).
[41] J ZHANG. Multi-source remote sensing data fusion: Status and trends. International Journal of Image and Data Fusion, 1, 5-24(2010).
[42] L YUAN, G ZHU. Research on remote sensing image classification based on feature level fusion. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences(2018).
[43] H ALBANWAN, R QIN. Spatiotemporal fusion in remote sensing. Recent Advances in Image Restoration with Applications to Real World Problems, 1-27(2020).
[44] H HASANI, F SAMADZADEGAN, P REINARTZ. A metaheuristic feature-level fusion strategy in classification of urban area using hyperspectral imagery and LiDAR data. European Journal of Remote Sensing, 50, 222-236(2017).
[45] V R PANDIT, R BHIWANI. Image fusion in remote sensing applications: A review. International journal of computer applications, 120(2015).
[46] B YUAN, L HAN, X GU et al. Multi-deep features fusion for high-resolution remote sensing image scene classification. Neural Computing and Applications, 33, 2047-2063(2021).
[47] H GHASSEMIAN. A review of remote sensing image fusion methods. Information Fusion, 32, 75-89(2016).
[48] S JIA, Z ZHAN, M ZHANG et al. Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 1437-1452(2020).
[49] H ALBANWAN, R QIN, X LU et al. 3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets. arXiv Preprint arXiv, 210700590(2021).
[50] R QIN, J TIAN, P REINARTZ. Spatiotemporal inferences for use in building detection using series of very-high-resolution space-borne stereo images. International Journal of Remote Sensing, 37, 3455-3476(2016).
[51] X WANG, Y FENG, R SONG et al. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data. Information Fusion, 82, 1-18(2022).
[52] A ORYNBAIKYZY, U GESSNER, C CONRAD. Crop type classification using a combination of optical and radar remote sensing data: A review. International Journal of Remote Sensing, 40, 6553-6595(2019).
[53] T ZHOU, J PAN, P ZHANG et al. Mapping winter wheat with multi-temporal SAR and optical images in an urban agricultural region. Sensors, 17, 1210(2017).
[54] I KHOSRAVI, A SAFARI, S HOMAYOUNI. MSMD: maximum separability and minimum dependency feature selection for cropland classification from optical and radar data. International Journal of Remote Sensing, 39, 2159-2176(2018).
[55] Y BAN, H HU, I M RANGEL. Fusion of QuickBird MS and Radarsat SAR data for urban land-cover mapping: Object-based and knowledge-based approach. International Journal of Remote Sensing, 31, 1391-1410(2010).
[56] Xingqian DU, Yanjie HOU, Yi TANG. A review of fusion methods of hyperspectral and LiDAR images. Journal of Yunnan Minzu University(Natural Sciences Edition), 29, 47-58(2020).
[57] P GHAMISI, B RASTI, N YOKOYA et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 7, 6-39(2019).
[58] M LU, B CHEN, X LIAO et al. Forest types classification based on multi-source data fusion. Remote Sensing, 9, 1153(2017).
[59] S CHEN, W WANG, H LIANG. Evaluating the effectiveness of fusing remote sensing images with significantly different spatial resolutions for thematic map production. Physics and Chemistry of the Earth, Parts A/B/C, 110, 71-80(2019).
[60] C YANG, Q ZHAN, H LIU et al. An IHS-based pan-sharpening method for spectral fidelity improvement using ripplet transform and compressed sensing. Sensors, 18, 3624(2018).
[61] Y LIU, J JIN, Q WANG et al. Region level based multi-focus image fusion using quaternion wavelet and normalized cut. Signal Processing, 97, 9-30(2014).
[62] Z LIN, G ZHANG. Research on ALI Image Fusion Algorithm based on Improved Brovey Transform. Remote Sensing Technology and Application, 35, 893-900(2020).
[63] H R SHAHDOOSTI. MS and PAN image fusion by combining Brovey and wavelet methods. arXiv preprint arXiv, 170101996(2017).
[64] C CHEN, X HE, B GUO et al. A pixel-level fusion method for multi-source optical remote sensing image combining the principal component analysis and curvelet transform. Earth Science Informatics, 13, 1005-1013(2020).
[65] B CHEN, B HUANG, B XU. A hierarchical spatiotemporal adaptive fusion model using one image pair. International journal of digital earth, 10, 639-655(2017).
[66] Q ZHANG, Y LIU, R S BLUM et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review. Information Fusion, 40, 57-75(2018).
[67] S-L HSU, GAU P-W, I WU et al. Region-based image fusion with artificial neural network. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 3, 1262-1265(2009).
[68] D LI. Remotely sensed images and GIS data fusion for automatic change detection. International Journal of Image and Data Fusion, 1, 99-108(2010).
[69] C ZHANG, Y CHEN, X YANG et al. Improved remote sensing image classification based on multi-scale feature fusion. Remote Sensing, 12, 213(2020).
[70] S WANG, W LI. GeoAI in terrain analysis: Enabling multi-source deep learning and data fusion for natural feature detection. Computers, Environment and Urban Systems, 90, 101715(2021).
[71] Y ZENG, J ZHANG, J VAN GENDEREN. Comparison and analysis of remote sensing data fusion techniques at feature and decision levels(2006).
[72] G XIAO, D P BAVIRISETTI, G LIU et al. Decision-Level Image Fusion. Image Fusion. Springer, 149-70(2020).
[73] A H S SOLBERG, A K JAIN, T TAXT. Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images. IEEE transactions on Geoscience and Remote Sensing, 32, 768-778(1994).
[74] S ROHEDA, H KRIM, Z-Q LUO et al. Decision level fusion.
[75] B HU, Q LI, G B HALL. A decision-level fusion approach to tree species classification from multi-source remotely sensed data. ISPRS Open Journal of Photogrammetry and Remote Sensing, 1, 100002(2021).
[76] B BIGDELI, P PAHLAVANI. A Dempster Shafer-based fuzzy multisensor fusion system using airborne LiDAR and hyperspectral imagery. International Journal of Remote Sensing, 39, 7718-7737(2018).
[77] J M BIOUCAS-DIAS, A PLAZA, G CAMPS-VALLS et al. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1, 6-36(2013).
[78] P GHAMISI, B RASTI, N YOKOYA et al. Multisource and multitemporal data fusion in remote sensing. arXiv preprint arXiv, 181208287(2018).
[79] D JIANG, D ZHUANG, Y HUANG. Investigation of image fusion for remote sensing application. New Advances in Image Fusion, 1-18(2013).
[80] J DONG, D ZHUANG, Y HUANG et al. Advances in multi-sensor data fusion: Algorithms and applications. Sensors, 9, 7771-7784(2009).
[81] Z-G WANG, W WANG, B SU. Multi-sensor Image fusion algorithm based on multiresolution analysis. International Journal of Online Engineering, 14(2018).
[82] J GU, Z WANG, J KUEN et al. Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377(2018).
[83] P GHAMISI, Y CHEN, X X ZHU. A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letters, 13, 1537-1541(2016).
[84] X XU, L WEI, Q RAN et al. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience & Remote Sensing, 1-13(2018).
[85] Q FENG, D ZHU, J YANG et al. Multisource hyperspectral and LiDAR data fusion for urban land-use mapping based on a modified two-branch convolutional neural network. ISPRS International Journal of Geo-Information, 8, 28(2019).
[86] N YADAV, S SHRIVASTRI. A review of image fusion using ihs with wavelet transform. International Journal of Computer Science Trends and Technology, 2, 15-20(2014).
[87] Y GU, J HAO, B CHEN et al. Top-Down Pyramid Fusion Network for high-resolution remote sensing semantic segmentation. Remote Sensing, 13, 4159(2021).
[88] Q MAN, P DONG, X YANG et al. Automatic extraction of grasses and individual trees in urban areas based on airborne hyperspectral and LiDAR data. Remote Sensing, 12, 2725(2020).
[89] B RASTI, P GHAMISI, J PLAZA et al. Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis. IEEE Transactions on Geoscience and Remote Sensing, 55, 6354-6365(2017).
[90] Wei GONG, Shuo SHI, Biwu CHEN et al. Development and application of airborne hyperspectral LiDAR imaging technology. Acta Optica Sinica, 42, 29-40(2022).
[91] N JOSHI, M BAUMANN, A EHAMMER et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8, 70(2016).
[92] P GHAMISI, J A BENEDIKTSSON, S PHINN. Land-cover classification using both hyperspectral and LiDAR data. International Journal of Image and Data Fusion, 6, 189-215(2015).
[93] T T SANKEY, J MCVAY, T L SWETNAM et al. UAV hyperspectral and LiDAR data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sensing in Ecology and Conservation, 4, 20-33(2018).
[94] E TUSA, A LAYBROS, MONNET J-M et al. Chapter 2.11 - Fusion of hyperspectral imaging and LiDAR for forest monitoring, 281-303(2019).
Get Citation
Copy Citation Text
Shuwei WANG, Qingtai SHU, Xu MA, Jingnan XIAO, Wenwu ZHOU. Research Progress in Data Fusion of LiDAR and Hyperspectral Imaging Technology[J]. Remote Sensing Technology and Application, 2024, 39(1): 11
Category: Research Articles
Received: Oct. 11, 2022
Accepted: --
Published Online: Jul. 22, 2024
The Author Email: WANG Shuwei (780390160@qq.com)