Laser & Optoelectronics Progress, Volume. 57, Issue 22, 220002(2020)
End-to-End Learning-Based Image Compression: A Review
Fig. 3. Images obtained by different quantization methods using JPEG compression[14]. (a) Original image; (b) rounding; (c) stochastic rounding; (d) additive noise
Fig. 4. Autoencoder based on hyperprior and recursive nearest neighbor probability fusion[27]
Fig. 5. Objective evaluation. (a) Pixel-level distortion measured by MS-SSIM (dB); (b) PSNR used for structural similarity evaluation
Fig. 6. Subjective evaluation. (a) JPEG420; (b) BPG444; (c) NLAIC MSE opt; (d) NLAIC MS-SSIM opt;(e) original image
Get Citation
Copy Citation Text
Jimin Chen, Zehao Lin. End-to-End Learning-Based Image Compression: A Review[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220002
Category: Reviews
Received: Dec. 18, 2019
Accepted: Apr. 17, 2020
Published Online: Nov. 5, 2020
The Author Email: Zehao Lin (lzhtocoffee@163.com)