Laser & Optoelectronics Progress, Volume. 57, Issue 22, 220002(2020)

End-to-End Learning-Based Image Compression: A Review

Jimin Chen1 and Zehao Lin2、*
Author Affiliations
  • 1Nanjing Forest Police College, Nanjing, Jiangsu 210023, China
  • 2College of Information Science and Technology, Donghua University, Shanghai 201620, China
  • show less
    Figures & Tables(6)
    Technical roadmap of end-to-end learning-based image compression
    Nonlinear transform based end-to-end learning image compression[10]
    Images obtained by different quantization methods using JPEG compression[14]. (a) Original image; (b) rounding; (c) stochastic rounding; (d) additive noise
    Autoencoder based on hyperprior and recursive nearest neighbor probability fusion[27]
    Objective evaluation. (a) Pixel-level distortion measured by MS-SSIM (dB); (b) PSNR used for structural similarity evaluation
    Subjective evaluation. (a) JPEG420; (b) BPG444; (c) NLAIC MSE opt; (d) NLAIC MS-SSIM opt;(e) original image
    Tools

    Get Citation

    Copy Citation Text

    Jimin Chen, Zehao Lin. End-to-End Learning-Based Image Compression: A Review[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 18, 2019

    Accepted: Apr. 17, 2020

    Published Online: Nov. 5, 2020

    The Author Email: Zehao Lin (lzhtocoffee@163.com)

    DOI:10.3788/LOP57.220002

    Topics